Suppr超能文献

在存在基因型与环境互作的情况下,表型选择基因分型在虹鳟育种计划中实现了更多的遗传进展。

Phenotypically Selective Genotyping Realizes More Genetic Gains in a Rainbow Trout Breeding Program in the Presence of Genotype-by-Environment Interactions.

作者信息

Chu Thinh Tuan, Sørensen Anders Christian, Lund Mogens Sandø, Meier Kristian, Nielsen Torben, Su Guosheng

机构信息

Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark.

Department of Animal Breeding and Genetics, Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam.

出版信息

Front Genet. 2020 Sep 11;11:866. doi: 10.3389/fgene.2020.00866. eCollection 2020.

Abstract

Selective genotyping of phenotypically superior animals may lead to bias and less accurate genomic breeding values (GEBV). Performing selective genotyping based on phenotypes measured in the breeding environment (B) is not necessarily a good strategy when the aim of a breeding program is to improve animals' performance in the commercial environment (C). Our simulation study compared different genotyping strategies for selection candidates and for fish in C in a breeding program for rainbow trout in the presence of genotype-by-environment interactions when the program had limited genotyping resources and unregistered pedigrees of individuals. For the reference population, selective genotyping of top and bottom individuals in C based on phenotypes measured in C led to the highest genetic gains, followed by random genotyping and then selective genotyping of top individuals in C. For selection candidates, selective genotyping of top individuals in B based on phenotypes measured in B led to the highest genetic gains, followed by selective genotyping of top and bottom individuals and then random genotyping. Selective genotyping led to bias in predicting GEBV. However, in scenarios that used selective genotyping of top fish in B and random genotyping of fish in C, predictions of GEBV were unbiased, with genetic correlations of 0.2 and 0.5 between traits measured in B and C. Estimates of variance components were sensitive to genotyping strategy, with an overestimation of the variance with selective genotyping of top and bottom fish and an underestimation of the variance with selective genotyping of top fish. Unbiased estimates of variance components were obtained when fish in B and C were genotyped at random. In conclusion, we recommend phenotypic genotyping of top and bottom fish in C and top fish in B for the purpose of selecting breeding animals and random genotyping of individuals in B and C for the purpose of estimating variance components when a genomic breeding program for rainbow trout aims to improve animals' performance in C.

摘要

对表型优良的动物进行选择性基因分型可能会导致偏差,并降低基因组育种值(GEBV)的准确性。当育种计划的目标是提高动物在商业环境(C)中的性能时,基于在育种环境(B)中测量的表型进行选择性基因分型不一定是一个好策略。我们的模拟研究比较了在虹鳟鱼育种计划中,当该计划的基因分型资源有限且个体系谱未登记时,在存在基因型与环境互作的情况下,针对选择候选个体以及C环境中的鱼的不同基因分型策略。对于参考群体,基于在C环境中测量的表型对C环境中表现最好和最差的个体进行选择性基因分型带来了最高的遗传增益,其次是随机基因分型,然后是对C环境中表现最好的个体进行选择性基因分型。对于选择候选个体,基于在B环境中测量的表型对B环境中表现最好的个体进行选择性基因分型带来了最高的遗传增益,其次是对表现最好和最差的个体进行选择性基因分型,然后是随机基因分型。选择性基因分型在预测GEBV时会导致偏差。然而,在使用对B环境中表现最好的鱼进行选择性基因分型和对C环境中的鱼进行随机基因分型的情况下,GEBV的预测是无偏差的,在B环境和C环境中测量的性状之间的遗传相关性分别为0.2和0.5。方差成分的估计对基因分型策略敏感,对表现最好和最差的鱼进行选择性基因分型会高估方差,而对表现最好的鱼进行选择性基因分型会低估方差。当对B环境和C环境中的鱼进行随机基因分型时,可获得无偏差的方差成分估计。总之,当虹鳟鱼的基因组育种计划旨在提高动物在C环境中的性能时,我们建议为了选择育种动物,对C环境中表现最好和最差的鱼以及B环境中表现最好的鱼进行表型基因分型,而为了估计方差成分,对B环境和C环境中的个体进行随机基因分型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/222c/7517704/b009529dc749/fgene-11-00866-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验