Yuan Wenhui, Qiu Yuanzheng, Tang Qinglai, Li Mengmeng, Tang Xiaojun, Yang Tao
Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China.
Acta Otorhinolaryngol Ital. 2025 Apr;45(2):84-93. doi: 10.14639/0392-100X-N3024. Epub 2025 Jan 15.
This study aimed to investigate the role of m6A-related long non-coding RNAs (lncRNAs) in the prognosis and tumour microenvironment of head and neck squamous cell carcinoma (HNSCC).
497 samples from The Cancer Genome Atlas were analysed to identify m6A-related lncRNAs via correlation models. Tripartite regression models, Kaplan-Meier analysis and nomograms were then utilised to assess the prognostic significance of these lncRNAs. Tumour mutation burden and immune cell infiltration analyses were also performed. Moreover, m6A-related lncRNAs expression and relation with IGF2BP2 were confirmed by RT-qPCR.
The risk model revealed that high-risk scores predicted poorer survival outcomes. The area under ROC curves for predicting 1-, 3-, 5-year survival in the training set were 0.70, 0.68, and 0.64, respectively. Seven key m6A-related lncRNAs showed associations with immune checkpoint molecules, especially CTLA4 and PD-1. Finally, we found that knockdown of TUG1 repressed the expression of IGF2BP2.
Our results suggest that the m6A-related lncRNA risk model has potential clinical utility in predicting prognosis and immunotherapeutic responses in patients with HNSCC. Identification of candidate compounds for immunotherapy further emphasises the model's relevance in guiding treatment decisions for HNSCC.
本研究旨在探讨m6A相关长链非编码RNA(lncRNA)在头颈部鳞状细胞癌(HNSCC)预后及肿瘤微环境中的作用。
通过相关性模型分析来自癌症基因组图谱的497个样本,以鉴定m6A相关lncRNA。然后利用三方回归模型、Kaplan-Meier分析和列线图评估这些lncRNA的预后意义。还进行了肿瘤突变负荷和免疫细胞浸润分析。此外,通过RT-qPCR证实了m6A相关lncRNA的表达及其与IGF2BP2的关系。
风险模型显示,高风险评分预示着较差的生存结果。训练集中预测1年、3年、5年生存率的ROC曲线下面积分别为0.70、0.68和0.64。7种关键的m6A相关lncRNA与免疫检查点分子相关,尤其是CTLA4和PD-1。最后,我们发现敲低TUG1可抑制IGF2BP2的表达。
我们的结果表明,m6A相关lncRNA风险模型在预测HNSCC患者的预后和免疫治疗反应方面具有潜在的临床应用价值。免疫治疗候选化合物的鉴定进一步强调了该模型在指导HNSCC治疗决策中的相关性。