Suppr超能文献

促进有效的人机大语言模型混合推理与决策。

Fostering effective hybrid human-LLM reasoning and decision making.

作者信息

Passerini Andrea, Gema Aryo, Minervini Pasquale, Sayin Burcu, Tentori Katya

机构信息

Department of Information Engineering and Computer Science, University of Trento, Trento, Italy.

School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

Front Artif Intell. 2025 Jan 8;7:1464690. doi: 10.3389/frai.2024.1464690. eCollection 2024.

Abstract

The impressive performance of modern Large Language Models (LLMs) across a wide range of tasks, along with their often non-trivial errors, has garnered unprecedented attention regarding the potential of AI and its impact on everyday life. While considerable effort has been and continues to be dedicated to overcoming the limitations of current models, the potentials and risks of human-LLM collaboration remain largely underexplored. In this perspective, we argue that enhancing the focus on human-LLM interaction should be a primary target for future LLM research. Specifically, we will briefly examine some of the biases that may hinder effective collaboration between humans and machines, explore potential solutions, and discuss two broader goals-mutual understanding and complementary team performance-that, in our view, future research should address to enhance effective human-LLM reasoning and decision-making.

摘要

现代大语言模型(LLMs)在广泛任务中令人印象深刻的表现,以及它们常常出现的非平凡错误,引发了人们对人工智能潜力及其对日常生活影响前所未有的关注。尽管已经并将继续投入大量努力来克服当前模型的局限性,但人类与大语言模型协作的潜力和风险在很大程度上仍未得到充分探索。从这个角度来看,我们认为加强对人类与大语言模型交互的关注应该是未来大语言模型研究的主要目标。具体而言,我们将简要审视一些可能阻碍人机有效协作的偏差,探索潜在的解决方案,并讨论两个更广泛的目标——相互理解和互补团队绩效——我们认为,未来的研究应致力于实现这些目标,以增强有效的人类与大语言模型推理及决策能力。

相似文献

1
Fostering effective hybrid human-LLM reasoning and decision making.促进有效的人机大语言模型混合推理与决策。
Front Artif Intell. 2025 Jan 8;7:1464690. doi: 10.3389/frai.2024.1464690. eCollection 2024.
4
Language models and psychological sciences.语言模型与心理科学。
Front Psychol. 2023 Oct 20;14:1279317. doi: 10.3389/fpsyg.2023.1279317. eCollection 2023.

本文引用的文献

1
Evaluating large language models in theory of mind tasks.评估大型语言模型在心理论任务中的表现。
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2405460121. doi: 10.1073/pnas.2405460121. Epub 2024 Oct 29.
5
Testing theory of mind in large language models and humans.测试大语言模型和人类的心理理论。
Nat Hum Behav. 2024 Jul;8(7):1285-1295. doi: 10.1038/s41562-024-01882-z. Epub 2024 May 20.
8
Dissociating language and thought in large language models.大语言模型中的语言与思维分离。
Trends Cogn Sci. 2024 Jun;28(6):517-540. doi: 10.1016/j.tics.2024.01.011. Epub 2024 Mar 19.
10
Hybrid approach combining deep learning and a rule based expert system for concept extraction from prescriptions.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10339977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验