Suppr超能文献

RL-QPSO网络:用于高效移动机器人路径规划的深度强化学习增强型量子粒子群优化算法

RL-QPSO net: deep reinforcement learning-enhanced QPSO for efficient mobile robot path planning.

作者信息

Jing Yang, Weiya Li

机构信息

Hebi Institute of Engineering and Technology, Henan Polytechnic University, Hebi, Henan, China.

出版信息

Front Neurorobot. 2025 Jan 8;18:1464572. doi: 10.3389/fnbot.2024.1464572. eCollection 2024.

Abstract

INTRODUCTION

Path planning in complex and dynamic environments poses a significant challenge in the field of mobile robotics. Traditional path planning methods such as genetic algorithms, Dijkstra's algorithm, and Floyd's algorithm typically rely on deterministic search strategies, which can lead to local optima and lack global search capabilities in dynamic settings. These methods have high computational costs and are not efficient for real-time applications.

METHODS

To address these issues, this paper presents a Quantum-behaved Particle Swarm Optimization model enhanced by deep reinforcement learning (RL-QPSO Net) aimed at improving global optimality and adaptability in path planning. The RL-QPSO Net combines quantum-inspired particle swarm optimization (QPSO) and deep reinforcement learning (DRL) modules through a dual control mechanism to achieve path optimization and environmental adaptation. The QPSO module is responsible for global path optimization, using quantum mechanics to avoid local optima, while the DRL module adjusts strategies in real-time based on environmental feedback, thus enhancing decision-making capabilities in complex high-dimensional scenarios.

RESULTS AND DISCUSSION

Experiments were conducted on multiple datasets, including Cityscapes, NYU Depth V2, Mapillary Vistas, and ApolloScape, and the results showed that RL-QPSO Net outperforms traditional methods in terms of accuracy, computational efficiency, and model complexity. This method demonstrated significant improvements in accuracy and computational efficiency, providing an effective path planning solution for real-time applications in complex environments for mobile robots. In the future, this method could be further extended to resource-limited environments to achieve broader practical applications.

摘要

引言

在移动机器人领域,复杂动态环境中的路径规划是一项重大挑战。传统的路径规划方法,如遗传算法、迪杰斯特拉算法和弗洛伊德算法,通常依赖确定性搜索策略,这可能导致局部最优,并且在动态环境中缺乏全局搜索能力。这些方法计算成本高,对于实时应用并不高效。

方法

为了解决这些问题,本文提出了一种通过深度强化学习增强的量子行为粒子群优化模型(RL-QPSO Net),旨在提高路径规划中的全局最优性和适应性。RL-QPSO Net通过双控制机制将量子启发粒子群优化(QPSO)和深度强化学习(DRL)模块相结合,以实现路径优化和环境适应。QPSO模块负责全局路径优化,利用量子力学避免局部最优,而DRL模块根据环境反馈实时调整策略,从而增强在复杂高维场景中的决策能力。

结果与讨论

在多个数据集上进行了实验,包括Cityscapes、NYU Depth V2、Mapillary Vistas和ApolloScape,结果表明RL-QPSO Net在准确性、计算效率和模型复杂性方面优于传统方法。该方法在准确性和计算效率方面有显著提高,为移动机器人在复杂环境中的实时应用提供了有效的路径规划解决方案。未来,该方法可进一步扩展到资源受限环境,以实现更广泛的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d879/11750848/8a2c78f85b57/fnbot-18-1464572-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验