玻璃化冷冻和纳米加热使得大鼠模型的长期器官冷冻保存和维持生命的肾移植成为可能。

Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model.

机构信息

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.

Department of Surgery, University of Minnesota, Minneapolis, MN, USA.

出版信息

Nat Commun. 2023 Jun 9;14(1):3407. doi: 10.1038/s41467-023-38824-8.

Abstract

Banking cryopreserved organs could transform transplantation into a planned procedure that more equitably reaches patients regardless of geographical and time constraints. Previous organ cryopreservation attempts have failed primarily due to ice formation, but a promising alternative is vitrification, or the rapid cooling of organs to a stable, ice-free, glass-like state. However, rewarming of vitrified organs can similarly fail due to ice crystallization if rewarming is too slow or cracking from thermal stress if rewarming is not uniform. Here we use "nanowarming," which employs alternating magnetic fields to heat nanoparticles within the organ vasculature, to achieve both rapid and uniform warming, after which the nanoparticles are removed by perfusion. We show that vitrified kidneys can be cryogenically stored (up to 100 days) and successfully recovered by nanowarming to allow transplantation and restore life-sustaining full renal function in nephrectomized recipients in a male rat model. Scaling this technology may one day enable organ banking for improved transplantation.

摘要

低温保存器官的银行业务可以将移植转变为一种计划性的程序,使更多的患者无论在地理和时间上受到何种限制都能得到平等的治疗。先前的器官低温保存尝试主要因冰晶形成而失败,但一种有前途的替代方法是玻璃化,即将器官迅速冷却到稳定、无冰、玻璃状的状态。然而,如果复温太慢,玻璃化器官的复温也可能因冰晶形成而失败,如果复温不均匀,还会因热应力而破裂。在这里,我们使用“纳米复温”,即在器官脉管系统内使用交变磁场加热纳米粒子,以实现快速和均匀的复温,然后通过灌注去除纳米粒子。我们表明,经过玻璃化处理的肾脏可以通过纳米复温进行低温保存(长达 100 天),并成功恢复,以便进行移植,并在雄性大鼠模型中为接受肾切除术的受体恢复维持生命的完全肾功能。这项技术的扩展可能有一天将使器官银行业务得到改善,从而提高移植效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索