文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探索衍生细胞外囊泡的蛋白质组学图谱和免疫调节功能。

Exploring the Proteomic Landscape and Immunomodulatory Functions of Derived Extracellular Vesicles.

作者信息

Dias Mawalle Kankanamge Hasitha Madhawa, Jayathilaka E H T Thulshan, Jayasinghe Jayasinghage Nirmani Chathurangika, Tennakoon Nipuna, Nikapitiya Chamilani, Whang Ilson, De Zoysa Mahanama

机构信息

College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.

National Marine Biodiversity Institute of Korea (MABIK), Janghang-eup, Seocheon 33662, Republic of Korea.

出版信息

J Microbiol Biotechnol. 2024 Dec 17;35:e2410001. doi: 10.4014/jmb.2410.10001.


DOI:10.4014/jmb.2410.10001
PMID:39849936
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11813346/
Abstract

Extracellular vesicles (EVs) have garnered attention in research for their potential as biochemical transporters and immune modulators, crucial for regulating the host immune system. The present study was conducted to isolate and characterize EVs from Gram negative bacteria (EVs) and investigate their proteomic profile and immune responses. Isolation of EVs was carried out using ultracentrifugation method. Transmission electron microscopy results confirmed the spherical shape of EVs. The average size and zeta potential were 85.3 ± 1.8 nm and -8.28 ± 0.41 mV, respectively. EVs consisted of 1,487 distinct proteins. Subcellular localization analysis revealed that "cell" and "cell part" were the most predominant areas for protein localization. Proteins associated with virulence, along with several chaperones that facilitate protein folding and stability, were also present. No toxicity was detected when EVs were treated to fathead minnow (FHM) cells up to 100 μg/ml. Fluorescent-labeled EVs showed cellular internalization in FHM cells at 24 h post treatment (hpt). gene expression in Raw 264.7 cells showed upregulation of interleukin , , and interferon with simultaneous upregulation of anti-inflammatory . , gene expression revealed that except for heat shock protein , all other genes were upregulated suggesting that EVs induced the expression of immune-related genes. Western blot analysis showed increased protein levels of tumor necrosis factor (Tnf)α in EVs-treated spleen tissue of zebrafish. Our results confirm that EVs can be successfully isolated using the ultracentrifugation method. Furthermore, exploring immunomodulatory mechanism of EVs is essential for their potential use as novel therapeutics in fish medicine.

摘要

细胞外囊泡(EVs)因其作为生物化学转运体和免疫调节剂的潜力而在研究中受到关注,这对调节宿主免疫系统至关重要。本研究旨在从革兰氏阴性菌中分离并鉴定EVs,研究其蛋白质组学特征和免疫反应。采用超速离心法分离EVs。透射电子显微镜结果证实了EVs的球形形状。平均大小和zeta电位分别为85.3±1.8nm和-8.28±0.41mV。EVs由1487种不同的蛋白质组成。亚细胞定位分析表明,“细胞”和“细胞部分”是蛋白质定位最主要的区域。还存在与毒力相关的蛋白质以及几种促进蛋白质折叠和稳定性的分子伴侣。当用高达100μg/ml的EVs处理黑头呆鱼(FHM)细胞时,未检测到毒性。荧光标记的EVs在处理后24小时(hpt)显示在FHM细胞中被细胞内化。Raw 264.7细胞中的基因表达显示白细胞介素、和干扰素上调,同时抗炎因子上调。基因表达显示,除热休克蛋白外,所有其他基因均上调,表明EVs诱导了免疫相关基因的表达。蛋白质印迹分析显示,在斑马鱼经EVs处理的脾脏组织中,肿瘤坏死因子(Tnf)α的蛋白质水平升高。我们的结果证实,使用超速离心法可以成功分离EVs。此外,探索EVs的免疫调节机制对于其在鱼类医学中作为新型治疗剂的潜在应用至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/8935b7bb61fc/jmb-35-e2410001-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/ef951aba25f6/jmb-35-e2410001-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/df1b046b457f/jmb-35-e2410001-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/0555bdf61518/jmb-35-e2410001-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/44529ee784c8/jmb-35-e2410001-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/df12d997da90/jmb-35-e2410001-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/19b9206c2fc3/jmb-35-e2410001-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/8935b7bb61fc/jmb-35-e2410001-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/ef951aba25f6/jmb-35-e2410001-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/df1b046b457f/jmb-35-e2410001-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/0555bdf61518/jmb-35-e2410001-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/44529ee784c8/jmb-35-e2410001-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/df12d997da90/jmb-35-e2410001-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/19b9206c2fc3/jmb-35-e2410001-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fe/11813346/8935b7bb61fc/jmb-35-e2410001-f7.jpg

相似文献

[1]
Exploring the Proteomic Landscape and Immunomodulatory Functions of Derived Extracellular Vesicles.

J Microbiol Biotechnol. 2024-12-17

[2]
Isolation, characterization, and immunomodulatory effects of extracellular vesicles isolated from fish pathogenic Aeromonas hydrophila.

Fish Shellfish Immunol. 2024-9

[3]
Pathogenicity and immunogenicity of Edwardsiella piscicida ferric uptake regulator (fur) mutations in zebrafish.

Fish Shellfish Immunol. 2020-12

[4]
The role of uhpA in Edwardsiella piscicida and the inflammatory cytokine response in tilapia.

Fish Shellfish Immunol. 2020-6

[5]
Universal stress proteins contribute Edwardsiella piscicida adversity resistance and pathogenicity and promote blocking host immune response.

Fish Shellfish Immunol. 2019-10-22

[6]
Plasma-derived exosomes of Edwardsiella piscicida challenged olive flounder (Paralichthys olivaceus): Characterization and miRNA profiling for potential biomarkers screening.

Fish Shellfish Immunol. 2025-1

[7]
Neutrophil plays critical role during Edwardsiella piscicida immersion infection in zebrafish larvae.

Fish Shellfish Immunol. 2019-2-8

[8]
Novel pectin isolated from Spirulina maxima enhances the disease resistance and immune responses in zebrafish against Edwardsiella piscicida and Aeromonas hydrophila.

Fish Shellfish Immunol. 2019-9-20

[9]
Immunomodulatory responses of extracellular vesicles released by gram-positive fish pathogen Streptococcus parauberis.

Fish Shellfish Immunol. 2024-5

[10]
Edwardsiella piscicida lacking the cyclic AMP receptor protein (Crp) is avirulent and immunogenic in fish.

Fish Shellfish Immunol. 2017-6-28

本文引用的文献

[1]
Mapping the proteomic landscape and anti-inflammatory role of Streptococcus parauberis extracellular vesicles.

Fish Shellfish Immunol. 2024-11

[2]
Isolation, characterization, and immunomodulatory effects of extracellular vesicles isolated from fish pathogenic Aeromonas hydrophila.

Fish Shellfish Immunol. 2024-9

[3]
Mass-produced gram-negative bacterial outer membrane vesicles activate cancer antigen-specific stem-like CD8 T cells which enables an effective combination immunotherapy with anti-PD-1.

J Extracell Vesicles. 2023-8

[4]
Extracellular vesicles: a rising star for therapeutics and drug delivery.

J Nanobiotechnology. 2023-7-20

[5]
Bacterial extracellular vesicles: an emerging avenue to tackle diseases.

Trends Microbiol. 2023-12

[6]
Bacterial extracellular vesicles induced oxidative stress and mitophagy through mTOR pathways in colon cancer cells, HT-29: Implications for bioactivity.

Biochim Biophys Acta Mol Cell Res. 2023-8

[7]
A Robust Protocol to Isolate Outer Membrane Vesicles from Nontypeable .

Methods Protoc. 2023-4-7

[8]
Characterization and Vaccine Potential of Outer Membrane Vesicles from subsp. .

Int J Mol Sci. 2023-3-7

[9]
Caveolin-1 regulates OMV-induced macrophage pro-inflammatory activation and multiple Toll-like receptors.

Front Immunol. 2023

[10]
Proteomics approaches: A review regarding an importance of proteome analyses in understanding the pathogens and diseases.

Front Vet Sci. 2022-12-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索