Suppr超能文献

人工智能在甲病诊断与管理中的应用:一项叙述性综述

Artificial Intelligence in Diagnosis and Management of Nail Disorders: A Narrative Review.

作者信息

Gaurav Vishal, Grover Chander, Tyagi Mehul, Saurabh Suman

机构信息

Department of Dermatology and Venereology, Maulana Azad Medical College, Bahadur Shah Zafar Marg, New Delhi, Delhi, India.

Department of Dermatology and STD, University College of Medical Sciences and Guru Teg Bahadur Hospital, Dilshad Garden, Delhi, India.

出版信息

Indian Dermatol Online J. 2024 Dec 11;16(1):40-49. doi: 10.4103/idoj.idoj_460_24. eCollection 2025 Jan-Feb.

Abstract

BACKGROUND

Artificial intelligence (AI) is revolutionizing healthcare by enabling systems to perform tasks traditionally requiring human intelligence. In healthcare, AI encompasses various subfields, including machine learning, deep learning, natural language processing, and expert systems. In the specific domain of onychology, AI presents a promising avenue for diagnosing nail disorders, analyzing intricate patterns, and improving diagnostic accuracy. This review provides a comprehensive overview of the current applications of AI in onychology, focusing on its role in diagnosing onychomycosis, subungual melanoma, nail psoriasis, nail fold capillaroscopy, and nail involvement in systemic diseases.

MATERIALS AND METHODS

A literature review on AI in nail disorders was conducted via PubMed and Google Scholar, yielding relevant studies. AI algorithms, particularly deep convolutional neural networks (CNNs), have demonstrated high sensitivity and specificity in interpreting nail images, aiding differential diagnosis as well as enhancing the efficiency of diagnostic processes in a busy clinical setting. In studies evaluating onychomycosis, AI has shown the ability to distinguish between normal nails, fungal infections, and other differentials, including nail psoriasis, with a high accuracy. AI systems have proven effective in identifying subungual melanoma. For nail psoriasis, AI has been used to automate the scoring of disease severity, reducing the time and effort required. AI applications in nail fold capillaroscopy have aided the analysis of diagnosis and prognosis of connective tissue diseases. AI applications have also been extended to recognize nail manifestations of systemic diseases, by analyzing changes in nail morphology and coloration. AI also facilitates the management of nail disorders by offering tools for personalized treatment planning, remote care, treatment monitoring, and patient education.

CONCLUSION

Despite these advancements, challenges such as data scarcity, image heterogeneity, interpretability issues, regulatory compliance, and poor workflow integration hinder the seamless adoption of AI in onychology practice. Ongoing research and collaboration between AI developers and nail experts is crucial to realize the full potential of AI in improving patient outcomes in onychology.

摘要

背景

人工智能(AI)正在彻底改变医疗保健行业,使系统能够执行传统上需要人类智能才能完成的任务。在医疗保健领域,AI涵盖多个子领域,包括机器学习、深度学习、自然语言处理和专家系统。在甲病学的特定领域,AI为诊断指甲疾病、分析复杂模式以及提高诊断准确性提供了一条有前景的途径。本综述全面概述了AI在甲病学中的当前应用,重点关注其在诊断甲癣、甲下黑色素瘤、指甲银屑病、甲襞毛细血管镜检查以及指甲在全身性疾病中的表现方面的作用。

材料与方法

通过PubMed和谷歌学术对关于指甲疾病中AI的文献进行综述,得出相关研究。AI算法,特别是深度卷积神经网络(CNN),在解释指甲图像方面已显示出高灵敏度和特异性,有助于鉴别诊断,并提高繁忙临床环境中诊断过程的效率。在评估甲癣的研究中,AI已显示出能够高精度地区分正常指甲、真菌感染以及其他鉴别诊断,包括指甲银屑病。AI系统已被证明在识别甲下黑色素瘤方面有效。对于指甲银屑病,AI已被用于自动对疾病严重程度进行评分,减少所需的时间和精力。AI在甲襞毛细血管镜检查中的应用有助于结缔组织疾病的诊断和预后分析。AI应用还通过分析指甲形态和颜色变化扩展到识别全身性疾病的指甲表现。AI还通过提供个性化治疗计划、远程护理、治疗监测和患者教育工具来促进指甲疾病的管理。

结论

尽管有这些进展,但数据稀缺、图像异质性、可解释性问题、法规合规性以及工作流程整合不佳等挑战阻碍了AI在甲病学实践中的无缝应用。AI开发者和指甲专家之间正在进行的研究与合作对于实现AI在改善甲病学患者预后方面的全部潜力至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e2d/11753549/69d458075657/IDOJ-16-40-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验