Suppr超能文献

深度学习预测多阅片者指甲银屑病。

DeepNAPSI multi-reader nail psoriasis prediction using deep learning.

机构信息

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 3, 91058, Erlangen, Germany.

Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.

出版信息

Sci Rep. 2023 Apr 1;13(1):5329. doi: 10.1038/s41598-023-32440-8.

Abstract

Nail psoriasis occurs in about every second psoriasis patient. Both, finger and toe nails can be affected and also severely destroyed. Furthermore, nail psoriasis is associated with a more severe course of the disease and the development of psoriatic arthritis. User independent quantification of nail psoriasis, however, is challenging due to the heterogeneous involvement of matrix and nail bed. For this purpose, the nail psoriasis severity index (NAPSI) has been developed. Experts grade pathological changes of each nail of the patient leading to a maximum score of 80 for all nails of the hands. Application in clinical practice, however, is not feasible due to the time-intensive manual grading process especially if more nails are involved. In this work we aimed to automatically quantify the modified NAPSI (mNAPSI) of patients using neuronal networks retrospectively. First, we performed photographs of the hands of patients with psoriasis, psoriatic arthritis, and rheumatoid arthritis. In a second step, we collected and annotated the mNAPSI scores of 1154 nail photos. Followingly, we extracted each nail automatically using an automatic key-point-detection system. The agreement among the three readers with a Cronbach's alpha of 94% was very high. With the nail images individually available, we trained a transformer-based neural network (BEiT) to predict the mNAPSI score. The network reached a good performance with an area-under-receiver-operator-curve of 88% and an area-under precision-recall-curve (PR-AUC) of 63%. We could compare the results with the human annotations and achieved a very high positive Pearson correlation of 90% by aggregating the predictions of the network on the test set to the patient-level. Lastly, we provided open access to the whole system enabling the use of the mNAPSI in clinical practice.

摘要

指甲银屑病发生在大约每两个银屑病患者中就有一个。手指和脚趾甲都可能受到影响,甚至严重受损。此外,指甲银屑病与疾病的更严重进程和银屑病关节炎的发展有关。然而,由于基质和甲板的异质性受累,指甲银屑病的用户独立量化具有挑战性。为此,已经开发了指甲银屑病严重指数(NAPSI)。专家对患者每个指甲的病理变化进行分级,导致双手所有指甲的最高得分为 80 分。然而,由于手动分级过程时间密集,特别是如果涉及更多指甲,在临床实践中的应用是不可行的。在这项工作中,我们旨在使用神经网络回顾性地自动量化改良的 NAPSI(mNAPSI)。首先,我们对银屑病、银屑病关节炎和类风湿关节炎患者的手部进行了拍照。其次,我们收集并注释了 1154 张指甲照片的 mNAPSI 评分。然后,我们使用自动关键点检测系统自动提取每个指甲。三位读者之间的一致性非常高,Cronbach's alpha 为 94%。有了单独的指甲图像,我们使用基于转换器的神经网络(BEiT)训练来预测 mNAPSI 评分。该网络的表现良好,接收器操作曲线下面积为 88%,精度召回曲线下面积(PR-AUC)为 63%。我们可以将结果与人类注释进行比较,并通过将网络在测试集上的预测聚合到患者水平,实现非常高的正 Pearson 相关性 90%。最后,我们提供了整个系统的开放访问权限,使 mNAPSI 能够在临床实践中使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d872/10067940/ae79144fdb09/41598_2023_32440_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验