Suppr超能文献

虚拟现实工作记忆任务中社交和非社交线索提示期间的动态神经网络状态:一种主导特征向量动力学分析方法。

Dynamic Neural Network States During Social and Non-Social Cueing in Virtual Reality Working Memory Tasks: A Leading Eigenvector Dynamics Analysis Approach.

作者信息

Ozel Pinar

机构信息

Electric and Electronic Engineering Department, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey.

出版信息

Brain Sci. 2024 Dec 24;15(1):4. doi: 10.3390/brainsci15010004.

Abstract

BACKGROUND/OBJECTIVES: This research investigates brain connectivity patterns in reaction to social and non-social stimuli within a virtual reality environment, emphasizing their impact on cognitive functions, specifically working memory.

METHODS

Employing the LEiDA framework with EEG data from 47 participants, I examined dynamic brain network states elicited by social avatars compared to non-social stick cues during a VR memory task. Through the integration of LEiDA with deep learning and graph theory analyses, unique connectivity patterns associated with cue type were discerned, underscoring the substantial influence of social cues on cognitive processes. LEiDA, conventionally utilized with fMRI, was creatively employed in EEG to detect swift alterations in brain network states, offering insights into cognitive processing dynamics.

RESULTS

The findings indicate distinct neural states for social and non-social cues; notably, social cues correlated with a unique brain state characterized by increased connectivity within self-referential and memory-processing networks, implying greater cognitive engagement. Moreover, deep learning attained approximately 99% accuracy in differentiating cue contexts, highlighting the efficacy of prominent eigenvectors from LEiDA in EEG analysis. Analysis of graph theory also uncovered structural network disparities, signifying enhanced integration in contexts involving social cues.

CONCLUSIONS

This multi-method approach elucidates the dynamic influence of social cues on brain connectivity and cognition, establishing a basis for VR-based cognitive rehabilitation and immersive learning, wherein social signals may significantly enhance cognitive function.

摘要

背景/目的:本研究调查在虚拟现实环境中对社交和非社交刺激做出反应时的大脑连接模式,强调它们对认知功能,特别是工作记忆的影响。

方法

我使用LEiDA框架和来自47名参与者的脑电图数据,研究了在虚拟现实记忆任务中,与非社交棒状线索相比,社交化身引发的动态脑网络状态。通过将LEiDA与深度学习和图论分析相结合,辨别出与线索类型相关的独特连接模式,突出了社交线索对认知过程的重大影响。LEiDA通常与功能磁共振成像一起使用,在这里创造性地应用于脑电图,以检测脑网络状态的快速变化,从而深入了解认知加工动态。

结果

研究结果表明社交和非社交线索存在不同的神经状态;值得注意的是,社交线索与一种独特的脑状态相关,其特征是自我参照和记忆处理网络内的连接增加,这意味着更高的认知参与度。此外,深度学习在区分线索情境方面达到了约99%的准确率,突出了LEiDA中显著特征向量在脑电图分析中的有效性。图论分析还发现了结构网络差异,表明在涉及社交线索的情境中整合增强。

结论

这种多方法途径阐明了社交线索对大脑连接和认知的动态影响,为基于虚拟现实的认知康复和沉浸式学习奠定了基础,其中社交信号可能会显著增强认知功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f799/11764163/d9672ffe107a/brainsci-15-00004-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验