Suppr超能文献

基于脑电图功能连接性评估重复经颅磁刺激治疗甲基苯丙胺成瘾的效果。

Assessment of rTMS treatment effects for methamphetamine addiction based on EEG functional connectivity.

作者信息

Li Yongcong, Yang Banghua, Ma Jun, Li Yunzhe, Zeng Hui, Zhang Jie

机构信息

School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444 China.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2373-2386. doi: 10.1007/s11571-024-10097-x. Epub 2024 Mar 19.

Abstract

UNLABELLED

Methamphetamine (MA) addiction leads to impairment of neural communication functions in the brain, and functional connectivity (FC) may be a valid indicator. However, it is unclear how FC in the brain changes in methamphetamine use disorder (MUD) after treatment with repetitive transcranial magnetic stimulation (rTMS). Thirty-four patients with MUD participated in this study. The subjects were randomized to receive the active or sham rTMS for four weeks. Subjects performed electroencephalography (EEG) examinations and visual analogue scale (VAS) assessments before and after the treatment. The FC networks were constructed and visualized, and then the graph theory analysis was carried out. Finally, machine learning was used to classify FC networks before and after rTMS. The results showed that (1) the active group showed a significant enhancement in connectivity in the beta band; (2) the global efficiency, local efficiency, and aggregation coefficient of the active group in the beta band decreased significantly; (3) the LDA algorithm combined with the beta band FC matrix achieved an average accuracy of 82.5% in distinguishing before and after treatment. This study demonstrated that brain FC could effectively assess the therapeutic effect of rTMS, among which the beta band was the most sensitive and effective frequency band.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11571-024-10097-x.

摘要

未标注

甲基苯丙胺(MA)成瘾会导致大脑神经通讯功能受损,功能连接性(FC)可能是一个有效的指标。然而,目前尚不清楚经重复经颅磁刺激(rTMS)治疗后,甲基苯丙胺使用障碍(MUD)患者大脑中的FC如何变化。34名MUD患者参与了本研究。受试者被随机分为两组,分别接受为期四周的主动rTMS或假rTMS治疗。受试者在治疗前后进行了脑电图(EEG)检查和视觉模拟量表(VAS)评估。构建并可视化了FC网络,然后进行了图论分析。最后,使用机器学习对rTMS前后的FC网络进行分类。结果表明:(1)主动治疗组在β波段的连接性显著增强;(2)主动治疗组在β波段的全局效率、局部效率和聚集系数显著降低;(3)线性判别分析(LDA)算法结合β波段FC矩阵在区分治疗前后时的平均准确率达到82.5%。本研究表明,大脑FC可以有效评估rTMS的治疗效果,其中β波段是最敏感和有效的频段。

补充信息

在线版本包含可在10.1007/s11571-024-10097-x获取的补充材料。

相似文献

3
Non-invasive brain stimulation techniques for chronic pain.用于慢性疼痛的非侵入性脑刺激技术
Cochrane Database Syst Rev. 2018 Mar 16;3(3):CD008208. doi: 10.1002/14651858.CD008208.pub4.
4
Non-invasive brain stimulation techniques for chronic pain.用于慢性疼痛的非侵入性脑刺激技术
Cochrane Database Syst Rev. 2018 Apr 13;4(4):CD008208. doi: 10.1002/14651858.CD008208.pub5.
5
Repetitive transcranial magnetic stimulation for tinnitus.重复经颅磁刺激治疗耳鸣
Cochrane Database Syst Rev. 2011 Oct 5(10):CD007946. doi: 10.1002/14651858.CD007946.pub2.
6
Transcranial magnetic stimulation for the treatment of epilepsy.经颅磁刺激治疗癫痫
Cochrane Database Syst Rev. 2016 Aug 11(8):CD011025. doi: 10.1002/14651858.CD011025.pub2.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验