Suppr超能文献

基于视觉Transformer的用于精神分裂症检测的面部诊断图像分析

ViT-Based Face Diagnosis Images Analysis for Schizophrenia Detection.

作者信息

Liu Huilin, Cao Runmin, Li Songze, Wang Yifan, Zhang Xiaohan, Xu Hua, Sun Xirong, Wang Lijuan, Qian Peng, Sun Zhumei, Gao Kai, Li Fufeng

机构信息

School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.

出版信息

Brain Sci. 2024 Dec 29;15(1):30. doi: 10.3390/brainsci15010030.

Abstract

OBJECTIVES

Computer-aided schizophrenia (SZ) detection methods mainly depend on electroencephalogram and brain magnetic resonance images, which both capture physical signals from patients' brains. These inspection techniques take too much time and affect patients' compliance and cooperation, while difficult for clinicians to comprehend the principle of detection decisions. This study proposes a novel method using face diagnosis images based on traditional Chinese medicine principles, providing a non-invasive, efficient, and interpretable alternative for SZ detection.

METHODS

An innovative face diagnosis image analysis method for SZ detection, which learns feature representations based on Vision Transformer (ViT) directly from face diagnosis images. It provides a face features distribution visualization and quantitative importance of each facial region and is proposed to supplement interpretation and to increase efficiency in SZ detection while keeping a high detection accuracy.

RESULTS

A benchmarking platform comprising 921 face diagnostic images, 6 benchmark methods, and 4 evaluation metrics was established. The experimental results demonstrate that our method significantly improves SZ detection performance with a 3-10% increase in accuracy scores. Additionally, it is found that facial regions rank in descending order according to importance in SZ detection as eyes, mouth, forehead, cheeks, and nose, which is exactly consistent with the clinical traditional Chinese medicine experience.

CONCLUSIONS

Our method fully leverages semantic feature representations of first-introduced face diagnosis images in SZ, offering strong interpretability and visualization capabilities. It not only opens a new path for SZ detection but also brings new tools and concepts to the research and application in the field of mental illness.

摘要

目的

计算机辅助精神分裂症(SZ)检测方法主要依赖脑电图和脑磁共振图像,这两种方法都从患者大脑中捕捉物理信号。这些检测技术耗时过长,影响患者的依从性和配合度,且临床医生难以理解检测决策的原理。本研究提出一种基于中医原理的利用面部诊断图像的新方法,为SZ检测提供一种非侵入性、高效且可解释的替代方案。

方法

一种用于SZ检测的创新型面部诊断图像分析方法,它直接从面部诊断图像中基于视觉Transformer(ViT)学习特征表示。它提供面部特征分布可视化以及每个面部区域的定量重要性,并被提议用于补充解释并提高SZ检测效率,同时保持高检测准确率。

结果

建立了一个包含921张面部诊断图像、6种基准方法和4种评估指标的基准平台。实验结果表明,我们的方法显著提高了SZ检测性能,准确率得分提高了3%-10%。此外,发现面部区域在SZ检测中的重要性从高到低依次为眼睛、嘴巴、额头、脸颊和鼻子,这与临床中医经验完全一致。

结论

我们的方法充分利用了首次引入的面部诊断图像在SZ中的语义特征表示,具有很强的可解释性和可视化能力。它不仅为SZ检测开辟了一条新途径,还为精神疾病领域的研究和应用带来了新工具和概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2db/11763813/11c387ec8726/brainsci-15-00030-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验