Suppr超能文献

基于编码器混合的多条件剩余使用寿命预测

Multi-Condition Remaining Useful Life Prediction Based on Mixture of Encoders.

作者信息

Liu Yang, Xu Bihe, Geng Yangli-Ao

机构信息

Key Laboratory of Big Data & Artificial Intelligence in Transportation (Ministry of Education), Beijing Jiaotong University, Beijing 100044, China.

China Energy Railway Equipment Co., Ltd., Beijing 100011, China.

出版信息

Entropy (Basel). 2025 Jan 17;27(1):79. doi: 10.3390/e27010079.

Abstract

Accurate Remaining Useful Life (RUL) prediction is vital for effective prognostics in and the health management of industrial equipment, particularly under varying operational conditions. Existing approaches to multi-condition RUL prediction often treat each working condition independently, failing to effectively exploit cross-condition knowledge. To address this limitation, this paper introduces MoEFormer, a novel framework that combines a Mixture of Encoders (MoE) with a Transformer-based architecture to achieve precise multi-condition RUL prediction. The core innovation lies in the MoE architecture, where each encoder is designed to specialize in feature extraction for a specific operational condition. These features are then dynamically integrated through a gated mixture module, enabling the model to effectively leverage cross-condition knowledge. A Transformer layer is subsequently employed to capture temporal dependencies within the input sequence, followed by a fully connected layer to produce the final prediction. Additionally, we provide a theoretical performance guarantee for MoEFormer by deriving a lower bound for its error rate. Extensive experiments on the widely used C-MAPSS dataset demonstrate that MoEFormer outperforms several state-of-the-art methods for multi-condition RUL prediction.

摘要

准确的剩余使用寿命(RUL)预测对于工业设备的有效预后和健康管理至关重要,尤其是在不同的运行条件下。现有的多工况RUL预测方法通常独立处理每个工作条件,未能有效利用跨工况知识。为了解决这一局限性,本文介绍了MoEFormer,这是一种新颖的框架,它将编码器混合(MoE)与基于Transformer的架构相结合,以实现精确的多工况RUL预测。核心创新在于MoE架构,其中每个编码器被设计用于专门针对特定运行条件进行特征提取。然后通过门控混合模块动态集成这些特征,使模型能够有效利用跨工况知识。随后采用Transformer层来捕获输入序列中的时间依赖性,接着是一个全连接层以产生最终预测。此外,我们通过推导MoEFormer错误率的下限为其提供了理论性能保证。在广泛使用的C-MAPSS数据集上进行的大量实验表明,MoEFormer在多工况RUL预测方面优于几种先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dee6/11764966/be65287f9d01/entropy-27-00079-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验