Suppr超能文献

算法智能体中的结构化动力学。

Structured Dynamics in the Algorithmic Agent.

作者信息

Ruffini Giulio, Castaldo Francesca, Vohryzek Jakub

机构信息

Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain.

Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain.

出版信息

Entropy (Basel). 2025 Jan 19;27(1):90. doi: 10.3390/e27010090.

Abstract

In the Kolmogorov Theory of Consciousness, algorithmic agents utilize inferred compressive models to track coarse-grained data produced by simplified world models, capturing regularities that structure subjective experience and guide action planning. Here, we study the dynamical aspects of this framework by examining how the requirement of tracking natural data drives the structural and dynamical properties of the agent. We first formalize the notion of a using the language of symmetry from group theory, specifically employing Lie pseudogroups to describe the continuous transformations that characterize invariance in natural data. Then, adopting a generic neural network as a proxy for the agent dynamical system and drawing parallels to Noether's theorem in physics, we demonstrate that data tracking forces the agent to mirror the symmetry properties of the generative world model. This dual constraint on the agent's constitutive parameters and dynamical repertoire enforces a hierarchical organization consistent with the manifold hypothesis in the neural network. Our findings bridge perspectives from algorithmic information theory (Kolmogorov complexity, compressive modeling), symmetry (group theory), and dynamics (conservation laws, reduced manifolds), offering insights into the neural correlates of agenthood and structured experience in natural systems, as well as the design of artificial intelligence and computational models of the brain.

摘要

在科尔莫戈罗夫意识理论中,算法主体利用推断出的压缩模型来追踪简化世界模型产生的粗粒度数据,捕捉构建主观体验并指导行动规划的规律。在此,我们通过研究追踪自然数据的要求如何驱动主体的结构和动态属性,来探讨该框架的动态方面。我们首先使用群论中的对称性语言形式化一个概念,具体采用李伪群来描述表征自然数据不变性的连续变换。然后,采用通用神经网络作为主体动态系统的代理,并与物理学中的诺特定理进行类比,我们证明数据追踪迫使主体反映生成性世界模型的对称属性。这种对主体构成参数和动态组成的双重约束强制形成一种与神经网络中的流形假设一致的层次组织。我们的研究结果融合了算法信息论(科尔莫戈罗夫复杂度、压缩建模)、对称性(群论)和动力学(守恒定律、约化流形)的观点,为自然系统中主体身份和结构化体验的神经关联,以及人工智能和大脑计算模型的设计提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d78/11765005/4421188241ed/entropy-27-00090-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验