Suppr超能文献

基于树突状神经元的RGB图像运动检测学习:一种仿生方法。

Learning Dendritic-Neuron-Based Motion Detection for RGB Images: A Biomimetic Approach.

作者信息

Chen Tianqi, Todo Yuki, Qiu Zhiyu, Hua Yuxiao, Qiu Delai, Wang Xugang, Tang Zheng

机构信息

Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan.

Faculty of Electrical, Information and Communication Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan.

出版信息

Biomimetics (Basel). 2024 Dec 28;10(1):11. doi: 10.3390/biomimetics10010011.

Abstract

In this study, we designed a biomimetic artificial visual system (AVS) inspired by biological visual system that can process RGB images. Our approach begins by mimicking the photoreceptor cone cells to simulate the initial input processing followed by a learnable dendritic neuron model to replicate ganglion cells that integrate outputs from bipolar and horizontal cell simulations. To handle multi-channel integration, we utilize a nonlearnable dendritic neuron model to simulate the lateral geniculate nucleus (LGN), which consolidates outputs across color channels, an essential function in biological multi-channel processing. Cross-validation experiments show that AVS demonstrates strong generalization across varied object-background configurations, achieving accuracy where traditional models like EfN-B0, ResNet50, and ConvNeXt typically fall short. Additionally, our results across different training-to-testing data ratios reveal that AVS maintains over 96% test accuracy even with limited training data, underscoring its robustness in low-data scenarios. This demonstrates the practical advantage of the AVS model in applications where large-scale annotated datasets are unavailable or expensive to curate. This AVS model not only advances biologically inspired multi-channel processing but also provides a practical framework for efficient, integrated visual processing in computational models.

摘要

在本研究中,我们设计了一种受生物视觉系统启发的仿生人工视觉系统(AVS),该系统能够处理RGB图像。我们的方法首先模仿光感受器视锥细胞来模拟初始输入处理,然后采用可学习的树突状神经元模型来复制神经节细胞,这些神经节细胞整合来自双极细胞和水平细胞模拟的输出。为了处理多通道整合,我们利用一个不可学习的树突状神经元模型来模拟外侧膝状体(LGN),它整合跨颜色通道的输出,这是生物多通道处理中的一项基本功能。交叉验证实验表明,AVS在各种不同的物体-背景配置中都表现出很强的泛化能力,在传统模型如EfN-B0、ResNet50和ConvNeXt通常表现不佳的情况下实现了高精度。此外,我们在不同训练与测试数据比例下的结果表明,即使训练数据有限,AVS仍能保持超过96%的测试准确率,凸显了其在低数据场景下的稳健性。这证明了AVS模型在无法获得大规模标注数据集或整理成本高昂的应用中的实际优势。这种AVS模型不仅推动了受生物启发的多通道处理,还为计算模型中的高效、集成视觉处理提供了一个实用框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3938/11763055/83d840f92c7a/biomimetics-10-00011-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验