Suppr超能文献

超声影像组学在鉴别硅胶隆胸术后女性乳腺结节良恶性中的应用

Application of Ultrasound Radiomics in Differentiating Benign from Malignant Breast Nodules in Women with Post-Silicone Breast Augmentation.

作者信息

Hao Ling, Chen Yang, Su Xuejiao, Ma Buyun

机构信息

Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China.

出版信息

Curr Oncol. 2025 Jan 3;32(1):29. doi: 10.3390/curroncol32010029.

Abstract

PURPOSE

To evaluate the diagnostic value of ultrasound radiomics in distinguishing between benign and malignant breast nodules in women who have undergone silicone breast augmentation.

METHODS

A retrospective study was conducted of 99 breast nodules detected by ultrasound in 93 women who had undergone silicone breast augmentation. The ultrasound data were collected between 1 January 2006 and 1 September 2023. The nodules were allocated into a training set ( = 69) and a validation set ( = 30). Regions of interest (ROIs) were manually delineated using 3D Slicer software, and radiomic features were extracted and selected using Python programming. Eight machine learning algorithms were applied to build predictive models, and their performance was assessed using sensitivity, specificity, area under the ROC curve (AUC), accuracy, Brier score, and log loss. Model performance was further evaluated using ROC curves and calibration curves, while clinical utility was assessed via decision curve analysis (DCA).

RESULTS

The random forest model exhibited superior performance in differentiating benign from malignant nodules in the validation set, achieving sensitivity of 0.765, specificity of 0.838, and an AUC of 0.787 (95% CI: 0.561-0.960). The model's accuracy, Brier score, and log loss were 0.796, 0.197, and 0.599, respectively. DCA suggested potential clinical utility of the model.

CONCLUSION

Ultrasound radiomics demonstrates promising diagnostic accuracy in differentiating benign from malignant breast nodules in women with silicone breast prostheses. This approach has the potential to serve as an additional diagnostic tool for patients following silicone breast augmentation.

摘要

目的

评估超声影像组学在区分接受硅胶隆胸的女性乳腺结节良恶性方面的诊断价值。

方法

对93例接受硅胶隆胸的女性中经超声检测出的99个乳腺结节进行回顾性研究。超声数据收集于2006年1月1日至2023年9月1日之间。将结节分为训练集(n = 69)和验证集(n = 30)。使用3D Slicer软件手动勾勒感兴趣区域(ROI),并使用Python编程提取和选择影像组学特征。应用八种机器学习算法构建预测模型,并使用灵敏度、特异性、ROC曲线下面积(AUC)、准确率、布里尔评分和对数损失评估其性能。使用ROC曲线和校准曲线进一步评估模型性能,同时通过决策曲线分析(DCA)评估临床实用性。

结果

随机森林模型在验证集中区分良性和恶性结节方面表现出卓越性能,灵敏度为0.765,特异性为0.838,AUC为0.787(95%CI:0.561 - 0.960)。模型的准确率、布里尔评分和对数损失分别为0.796、0.197和0.599。DCA表明该模型具有潜在的临床实用性。

结论

超声影像组学在区分接受硅胶乳房假体的女性乳腺结节良恶性方面显示出有前景的诊断准确性。这种方法有可能作为硅胶隆胸术后患者的一种额外诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c7/11764215/20c1b4a9d73a/curroncol-32-00029-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验