Suppr超能文献

评估用于高光谱成像相机稳健光谱性能评估的归一化方法。

Evaluating Normalization Methods for Robust Spectral Performance Assessments of Hyperspectral Imaging Cameras.

作者信息

Mazdeyasna Siavash, Arefin Mohammed Shahriar, Fales Andrew, Leavesley Silas J, Pfefer T Joshua, Wang Quanzeng

机构信息

Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.

Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA.

出版信息

Biosensors (Basel). 2025 Jan 4;15(1):20. doi: 10.3390/bios15010020.

Abstract

Hyperspectral imaging (HSI) technology, which offers both spatial and spectral information, holds significant potential for enhancing diagnostic performance during endoscopy and other medical procedures. However, quantitative evaluation of HSI cameras is challenging due to various influencing factors (e.g., light sources, working distance, and illumination angle) that can alter the reflectance spectra of the same target as these factors vary. Towards robust, universal test methods, we evaluated several data normalization methods aimed at minimizing the impact of these factors. Using a high-resolution HSI camera, we measured the reflectance spectra of diffuse reflectance targets illuminated by two different light sources. These spectra, along with the reference spectra from the target manufacturer, were normalized with nine different methods (e.g., area under the curve, standard normal variate, and centering power methods), followed by a uniform scaling step. We then compared the measured spectra to the reference to evaluate the capability of each normalization method in ensuring a consistent, standardized performance evaluation. Our results demonstrate that normalization can mitigate the impact of some factors during HSI camera evaluation, with performance varying across methods. Generally, noisy spectra pose challenges for normalization methods that rely on limited reflectance values, while methods based on reflectance values across the entire spectrum (such as standard normal variate) perform better. The findings also suggest that absolute reflectance spectral measurements may be less effective for clinical diagnostics, whereas normalized spectral measurements are likely more appropriate. These findings provide a foundation for standardized performance testing of HSI-based medical devices, promoting the adoption of high-quality HSI technology for critical applications such as early cancer detection.

摘要

高光谱成像(HSI)技术能够同时提供空间和光谱信息,在内窥镜检查及其他医疗程序中提升诊断性能方面具有巨大潜力。然而,由于各种影响因素(如光源、工作距离和照明角度)会随着这些因素的变化而改变同一目标的反射光谱,因此对HSI相机进行定量评估具有挑战性。为了建立稳健、通用的测试方法,我们评估了几种旨在最小化这些因素影响的数据归一化方法。使用高分辨率HSI相机,我们测量了由两种不同光源照射的漫反射目标的反射光谱。这些光谱与目标制造商提供的参考光谱一起,用九种不同方法(如曲线下面积、标准正态变量和中心化功率法)进行归一化,然后进行统一缩放步骤。然后,我们将测量光谱与参考光谱进行比较,以评估每种归一化方法在确保一致、标准化性能评估方面的能力。我们的结果表明,归一化可以减轻HSI相机评估过程中某些因素的影响,不同方法的性能有所不同。一般来说,噪声光谱对依赖有限反射率值的归一化方法构成挑战,而基于整个光谱反射率值的方法(如标准正态变量)表现更好。研究结果还表明,绝对反射光谱测量对于临床诊断可能效果较差,而归一化光谱测量可能更合适。这些发现为基于HSI的医疗设备的标准化性能测试奠定了基础,促进了高质量HSI技术在早期癌症检测等关键应用中的采用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a7/11763101/220cbd057849/biosensors-15-00020-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验