Xiao Yanteng, Yu Fuqing, Xia Chenfeng, Zhu Deyu, Chen Jiwen, Liu Nengji, Zhao Yuye, Qi Ruijuan, Guo Wei, You Bo, Yao Tao, Pang Yuanjie, Wang Ziyun, Wang Hongming, Song Fei, Xia Bao Yu
School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China.
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China.
J Am Chem Soc. 2025 May 7;147(18):15654-15665. doi: 10.1021/jacs.5c02896. Epub 2025 Apr 24.
The electrocatalytic conversion of carbon dioxide (CO) to ethylene (CH) holds great promise for sustainable chemical synthesis, yet achieving industrially relevant production rates remains a significant challenge. Through computational screening, we have identified a praseodymium (Pr) single-atom alloy embedded in a copper (Cu) catalyst (Pr@Cu) that exhibits superior CO activation and a remarkably low energy barrier for asymmetric *CO-*CHO coupling, primarily by facilitating the *CHO intermediate formation. Our optimized catalyst, Pr@Cu-2 (6 wt % Pr), achieves a CH Faradaic efficiency (FE) of 64.2% at -1.6 V versus the reversible hydrogen electrode (RHE) under a high current density of 1200 mA cm in the CO reduction reaction (CORR). Furthermore, when integrated into a 100 cm membrane electrode assembly (MEA) electrolyzer, Pr@Cu-2 demonstrates robust performance, maintaining a continuous CH production rate of 21.3 mL min at 20 A for over 200 h. This work provides fundamental insights into the role of Pr single-atom alloys in the CORR and highlights their potential for scalable CH electrosynthesis.
将二氧化碳(CO₂)电催化转化为乙烯(C₂H₄)在可持续化学合成方面具有巨大潜力,但要实现与工业相关的生产速率仍然是一项重大挑战。通过计算筛选,我们确定了一种嵌入铜(Cu)催化剂中的镨(Pr)单原子合金(Pr@Cu),该合金表现出优异的CO₂活化性能以及不对称*CO-CHO偶联的极低能垒,主要是通过促进CHO中间体的形成。我们优化后的催化剂Pr@Cu-2(6 wt% Pr)在-1.6 V(相对于可逆氢电极(RHE))的高电流密度1200 mA cm⁻²下的CO₂还原反应(CORR)中实现了64.2%的C₂H₄法拉第效率(FE)。此外,当集成到100 cm²的膜电极组件(MEA)电解槽中时,Pr@Cu-2表现出稳健的性能,在20 A下保持21.3 mL min⁻¹的连续C₂H₄产率超过200小时。这项工作为Pr单原子合金在CORR中的作用提供了基本见解,并突出了它们在可扩展C₂H₄电合成中的潜力。