Suppr超能文献

利用机器学习打击非法木材和林产品贸易。

Combating trade in illegal wood and forest products with machine learning.

作者信息

Datta Debanjan, Simeone John C, Meadows Amelia, Outhwaite Willow, Keong Chen Hin, Self Nathan, Walker Linda, Ramakrishnan Naren

机构信息

Department of Computer Science, Virginia Tech, Arlington, VA, United States of America.

Simeone Consulting, LLC, Littleton, NH, United States of America.

出版信息

PLoS One. 2025 Jan 24;20(1):e0311982. doi: 10.1371/journal.pone.0311982. eCollection 2025.

Abstract

Trade in wood and forest products spans the global supply chain. Illegal logging and associated trade in forest products present a persistent threat to vulnerable ecosystems and communities. Illegal timber trade has been linked to violations of tax and conservation laws, as well as broader transnational crimes. The United States is the largest importer globally of wood and forest products, such as pulp, paper, flooring, and furniture-importing $78 billion in 2021. Transaction-level data such as shipping container manifests and bills of lading provide a comprehensive data source that can be used to detect and disrupt trade that may be suspected of containing illegally harvested or traded forest products. Owing to the volume, velocity, and complexity of shipment data, an automated decision support system is required for the purposes of detecting suspicious forest product shipments. We present a proof of concept framework using machine learning and big data approaches-combining domain expertise with automation-to achieve this objective. We formulated the underlying machine learning problem as an anomaly detection problem and collected and collated forest sector-specific domain knowledge to filter and target shipments of interest. In this work, we provide the overview of our framework, with the details of domain knowledge extraction and machine learning models, and discuss initial results and analysis of flagged anomalous and potentially suspicious records to demonstrate the efficacy of this approach. The proof of concept work presented here provides the groundwork for an actionable and feasible approach to assisting enforcement agencies with the detection of suspicious shipments that may contain illegally harvested or traded wood.

摘要

木材和林产品贸易贯穿全球供应链。非法采伐及相关林产品贸易对脆弱的生态系统和社区构成持续威胁。非法木材贸易与违反税收和保护法律以及更广泛的跨国犯罪有关。美国是全球最大的木材和林产品进口国,如纸浆、纸张、地板和家具等,2021年进口额达780亿美元。诸如集装箱舱单和提单等交易层面的数据提供了一个全面的数据源,可用于检测和扰乱可能涉嫌包含非法采伐或交易的林产品的贸易。由于货运数据的数量、速度和复杂性,需要一个自动化决策支持系统来检测可疑的林产品货运。我们提出了一个概念验证框架,使用机器学习和大数据方法,将领域专业知识与自动化相结合来实现这一目标。我们将潜在的机器学习问题表述为异常检测问题,并收集和整理了林业部门特定的领域知识,以筛选和锁定感兴趣的货运。在这项工作中,我们概述了我们的框架,介绍了领域知识提取和机器学习模型的细节,并讨论了标记出的异常和潜在可疑记录的初步结果及分析,以证明这种方法的有效性。此处展示的概念验证工作为一种可行且可操作的方法奠定了基础,该方法可协助执法机构检测可能包含非法采伐或交易木材的可疑货运。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/097d/11759393/13cd3635afe1/pone.0311982.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验