Suppr超能文献

一种基于跨域的运动想象通道选择方法。

A cross-domain-based channel selection method for motor imagery.

作者信息

Qin Yunfeng, Zhang Li, Yu Boyang

机构信息

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing, University, Chongqing, 400044, People's Republic of China.

出版信息

Med Biol Eng Comput. 2025 Jun;63(6):1765-1775. doi: 10.1007/s11517-025-03298-x. Epub 2025 Jan 25.

Abstract

Selecting channels for motor imagery (MI)-based brain-computer interface (BCI) systems can not only enhance the portability of the systems, but also improve the decoding performance. Hence, we propose a cross-domain-based channel selection (CDCS) approach, which effectively minimizes the number of EEG channels used while maintaining high accuracy in MI recognition. The EEG source imaging (ESI) technique is employed to map scalp EEG into the cortical source domain. We divide the equivalent dipoles in the source domain into different regions by k-means clustering. Then, we calculate the band energy (5-40 Hz) of time series of dipoles in these regions by power spectral density (PSD), and the regions with the highest and lowest band energy are selected as the region of interests (ROIs) in the source domain. Subsequently, Pearson correlation coefficients between the dipole time series in ROIs and scalp EEG are used as the criterion for channel selection and a multi-trial-sorting-based channel selection strategy is proposed. Finally, we propose the CDCS-based MI classification framework, where common spatial pattern is applied to extract features and linear discriminant analysis is used to identify MI tasks. The CDCS method demonstrated significant improvement in decoding accuracy on two public datasets, achieving increases of 18.51% and 13.37% compared to all-channel method, and 10.74% and 3.43% compared to the three-channel method. The experimental results validated that CDCS is effective in selecting important channels.

摘要

为基于运动想象(MI)的脑机接口(BCI)系统选择通道,不仅可以提高系统的便携性,还能提升解码性能。因此,我们提出了一种基于跨域的通道选择(CDCS)方法,该方法能在保持MI识别高精度的同时,有效减少所使用的脑电图(EEG)通道数量。采用EEG源成像(ESI)技术将头皮EEG映射到皮质源域。我们通过k均值聚类将源域中的等效偶极子划分为不同区域。然后,利用功率谱密度(PSD)计算这些区域中偶极子时间序列的带能量(5 - 40Hz),并将带能量最高和最低的区域选为源域中的感兴趣区域(ROI)。随后,将ROI中偶极子时间序列与头皮EEG之间的皮尔逊相关系数用作通道选择的标准,并提出了一种基于多次试验排序的通道选择策略。最后,我们提出了基于CDCS的MI分类框架,其中应用共同空间模式提取特征,并使用线性判别分析识别MI任务。CDCS方法在两个公共数据集上的解码准确率有显著提高,与全通道方法相比分别提高了18.51%和13.37%,与三通道方法相比分别提高了10.74%和3.43%。实验结果验证了CDCS在选择重要通道方面是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验