Suppr超能文献

集成阿基米德螺旋以提高混合性能的被动式微流控微混合器的设计与研究

Design and Investigation of a Passive-Type Microfluidics Micromixer Integrated with an Archimedes Screw for Enhanced Mixing Performance.

作者信息

Waqas Muhammad, Palevicius Arvydas, Jurenas Vytautas, Pilkauskas Kestutis, Janusas Giedrius

机构信息

Faculty of Mechanical Engineering and Design, Kaunas University of Technology, 51424 Kaunas, Lithuania.

出版信息

Micromachines (Basel). 2025 Jan 12;16(1):82. doi: 10.3390/mi16010082.

Abstract

In recent years, microfluidics has emerged as an interdisciplinary field, receiving significant attention across various biomedical applications. Achieving a noticeable mixing of biofluids and biochemicals at laminar flow conditions is essential in numerous microfluidics systems. In this research work, a new kind of micromixer design integrated with an Archimedes screw is designed and investigated using numerical simulation and experimental approaches. First, the geometrical parameters such as screw length (), screw pitch () and gap () are optimized using the Design of Expert (DoE) approach and the Central Composite Design (CCD) method. The experimental designs generated by DoE are then numerically simulated aiming to determine Mixing Index () and Performance Index (). For this purpose, COMSOL Multiphysics with two physics modules-laminar and transport diluted species-is used. The results revealed a significant influence of screw length, screw pitch and gap on mixing performance. The optimal design achieved is then scaled up and fabricated using a 3D additive manufacturing technique. In addition, the optimal micromixer design is numerically and experimentally investigated at diverse Reynolds numbers, ranging from 2 to 16. The findings revealed the optimal geometrical parameters that produce the best result compared to other designs are a screw length of 0.5 mm, screw pitch of 0.23409 mm and a 0.004 mm gap. The obtained values of the mixing index and the performance index are 98.47% and 20.15 Pa, respectively. In addition, a higher mixing performance is achieved at the lower Reynolds number of 2, while a lower mixing performance is observed at the higher Reynolds number of 16. This study can be very beneficial for understanding the impact of geometrical parameters and their interaction with mixing performance.

摘要

近年来,微流控技术已成为一个跨学科领域,在各种生物医学应用中受到广泛关注。在许多微流控系统中,在层流条件下实现生物流体和生物化学物质的显著混合至关重要。在这项研究工作中,设计了一种集成阿基米德螺旋的新型微混合器,并采用数值模拟和实验方法进行研究。首先,使用专家设计(DoE)方法和中心复合设计(CCD)方法优化诸如螺杆长度()、螺距()和间隙()等几何参数。然后对DoE生成的实验设计进行数值模拟,以确定混合指数()和性能指数()。为此,使用了具有层流和传输稀释物种两个物理模块的COMSOL Multiphysics软件。结果表明,螺杆长度、螺距和间隙对混合性能有显著影响。然后使用3D增材制造技术对实现的最佳设计进行放大和制造。此外,在2至16的不同雷诺数下对最佳微混合器设计进行了数值和实验研究。研究结果表明,与其他设计相比,产生最佳结果的最佳几何参数是螺杆长度为0.5毫米、螺距为0.23409毫米和间隙为0.004毫米。混合指数和性能指数的获得值分别为98.47%和20.15帕。此外,在较低的雷诺数2时实现了较高的混合性能,而在较高的雷诺数16时观察到较低的混合性能。这项研究对于理解几何参数的影响及其与混合性能的相互作用可能非常有益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b82d/11767677/ced0a8f431ca/micromachines-16-00082-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验