Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
Lab Chip. 2021 Jun 15;21(12):2453-2463. doi: 10.1039/d1lc00265a.
High-molecular-weight polymeric nanoparticles are critical to increasing the loading efficacy and tuning the release profile of targeted molecules for medical diagnosis, imaging, and therapeutics. Although a number of microfluidic approaches have attained reproducible nanoparticle synthesis, it is still challenging to fabricate nanoparticles from high-molecular-weight polymers in a size and structure-controlled manner. In this work, an acoustofluidic platform is developed to synthesize size-tunable, high-molecular-weight (>45 kDa) poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-PEG) nanoparticles without polymer aggregation by exploiting the characteristics of complete and ultrafast mixing. Moreover, the acoustofluidic approach achieves two features that have not been achieved by existing microfluidic approaches: (1) multi-step (≥2) sequential nanoprecipitation in a single device, and (2) synthesis of core-shell structured PLGA-PEG/lipid nanoparticles with high molecular weights. The developed platform expands microfluidic potential in nanomaterial synthesis, where high-molecular-weight polymers, multiple reagents, or sequential nanoprecipitations are needed.
高分子量聚合物纳米粒子对于提高靶向分子的载药效率和调整释放特性,从而实现医学诊断、成像和治疗至关重要。尽管许多微流控方法已经实现了可重复的纳米粒子合成,但仍然难以以尺寸和结构可控的方式从高分子量聚合物制备纳米粒子。在这项工作中,我们开发了一种声流控平台,通过利用完全和超快混合的特性,在不发生聚合物聚集的情况下,合成尺寸可调、高分子量(>45 kDa)的聚(乳酸-共-乙醇酸)-b-聚(乙二醇)(PLGA-PEG)纳米粒子。此外,声流控方法实现了现有微流控方法无法实现的两个特征:(1)在单个装置中进行多步(≥2)顺序成核沉淀,以及(2)合成具有高分子量的核壳结构的 PLGA-PEG/脂质纳米粒子。所开发的平台扩展了微流控在纳米材料合成中的潜力,其中需要高分子量聚合物、多种试剂或顺序成核沉淀。