Suppr超能文献

制备可调谐、高分子量聚合物纳米粒子的超快声流微混合。

Fabrication of tunable, high-molecular-weight polymeric nanoparticles ultrafast acoustofluidic micromixing.

机构信息

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.

Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.

出版信息

Lab Chip. 2021 Jun 15;21(12):2453-2463. doi: 10.1039/d1lc00265a.

Abstract

High-molecular-weight polymeric nanoparticles are critical to increasing the loading efficacy and tuning the release profile of targeted molecules for medical diagnosis, imaging, and therapeutics. Although a number of microfluidic approaches have attained reproducible nanoparticle synthesis, it is still challenging to fabricate nanoparticles from high-molecular-weight polymers in a size and structure-controlled manner. In this work, an acoustofluidic platform is developed to synthesize size-tunable, high-molecular-weight (>45 kDa) poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-PEG) nanoparticles without polymer aggregation by exploiting the characteristics of complete and ultrafast mixing. Moreover, the acoustofluidic approach achieves two features that have not been achieved by existing microfluidic approaches: (1) multi-step (≥2) sequential nanoprecipitation in a single device, and (2) synthesis of core-shell structured PLGA-PEG/lipid nanoparticles with high molecular weights. The developed platform expands microfluidic potential in nanomaterial synthesis, where high-molecular-weight polymers, multiple reagents, or sequential nanoprecipitations are needed.

摘要

高分子量聚合物纳米粒子对于提高靶向分子的载药效率和调整释放特性,从而实现医学诊断、成像和治疗至关重要。尽管许多微流控方法已经实现了可重复的纳米粒子合成,但仍然难以以尺寸和结构可控的方式从高分子量聚合物制备纳米粒子。在这项工作中,我们开发了一种声流控平台,通过利用完全和超快混合的特性,在不发生聚合物聚集的情况下,合成尺寸可调、高分子量(>45 kDa)的聚(乳酸-共-乙醇酸)-b-聚(乙二醇)(PLGA-PEG)纳米粒子。此外,声流控方法实现了现有微流控方法无法实现的两个特征:(1)在单个装置中进行多步(≥2)顺序成核沉淀,以及(2)合成具有高分子量的核壳结构的 PLGA-PEG/脂质纳米粒子。所开发的平台扩展了微流控在纳米材料合成中的潜力,其中需要高分子量聚合物、多种试剂或顺序成核沉淀。

相似文献

引用本文的文献

1
Acoustofluidics: Technology Advances and Applications from 2022 to 2024.声流体学:2022年至2024年的技术进展与应用
Anal Chem. 2025 Apr 8;97(13):6847-6870. doi: 10.1021/acs.analchem.4c06803. Epub 2025 Mar 25.

本文引用的文献

1
Acoustofluidic methods in cell analysis.细胞分析中的声流体方法。
Trends Analyt Chem. 2019 Aug;117:280-290. doi: 10.1016/j.trac.2019.06.034. Epub 2019 Jul 13.
6
Cell lysis via acoustically oscillating sharp edges.通过声振荡的锐利边缘裂解细胞。
Lab Chip. 2019 Dec 21;19(24):4021-4032. doi: 10.1039/c9lc00498j. Epub 2019 Nov 13.
7
Acoustofluidic Synthesis of Particulate Nanomaterials.颗粒状纳米材料的声流体合成
Adv Sci (Weinh). 2019 Aug 27;6(19):1900913. doi: 10.1002/advs.201900913. eCollection 2019 Oct 2.
9
Tri-fluid mixing in a microchannel for nanoparticle synthesis.微通道中用于纳米颗粒合成的三流体混合。
Lab Chip. 2019 Sep 7;19(17):2936-2946. doi: 10.1039/c9lc00425d. Epub 2019 Aug 5.
10
Microfluidic Generation of Nanomaterials for Biomedical Applications.微流控技术在生物医学中的应用
Small. 2020 Mar;16(9):e1901943. doi: 10.1002/smll.201901943. Epub 2019 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验