Titov Roman A, Kadetova Alexandra V, Manukovskaya Diana V, Smirnov Maxim V, Tokko Olga V, Sidorov Nikolay V, Biryukova Irina V, Masloboeva Sofja M, Palatnikov Mikhail N
Tananaev Institute of Chemistry-Subdivision of the Federal Research Centre "Kola Science Centre of the Russian Academy of Sciences" (ICT KSC RAS), Apatity 184209, Murmansk Region, Russia.
Solid State Physics Department, Petrozavodsk State University (PetrSU), Petrozavodsk 185910, Republic of Karelia, Russia.
Materials (Basel). 2025 Jan 18;18(2):436. doi: 10.3390/ma18020436.
We proposed and investigated a refinement of technology for obtaining Mg-doped LiNbO (LN) crystals by co-doping it with B. LN:Mg (5.0 mol%) is now the most widely used material based on bulk lithium niobate. It is suitable for light modulation and transformation. We found that non-metal boron decreases threshold concentrations of the target dopant in many ways. In addition, we earlier determined that the method of boron introduction into the LN charge strongly affects the LN:B crystal structure. So we investigated the point structural defects of two series of LN:Mg:B crystals obtained by different doping methods, in which the stage of dopant introduction was different. We investigated the features of boron cation localization in LN:Mg:B single crystals. We conducted the study using XRD (X-ray diffraction) analysis. We have confirmed that the homogeneous doping method introduces an additional defect (Mg) into the structure of LN:Mg:B single crystals. Vacancies in niobium positions (V) are formed as a compensator for the excess positive charge of point structural defects. According to model calculations, boron is localized in most cases in the tetrahedron face common with the vacant niobium octahedron from the first layer (VO). The energy of the Coulomb interaction is minimal in the LN:Mg:B crystal (2.57 mol% MgO and 0.42 × 10 wt% B in the crystal); it was obtained using the solid-phase doping technology. The solid-phase doping technology is better suited for obtaining boron-containing crystals with properties characteristic of double-doped crystals (LN:Mg:B).
我们提出并研究了一种通过与硼共掺杂来获得镁掺杂铌酸锂(LN)晶体的技术改进方法。LN:Mg(5.0摩尔%)是目前基于块状铌酸锂使用最广泛的材料。它适用于光调制和光转换。我们发现非金属硼在许多方面降低了目标掺杂剂的阈值浓度。此外,我们 earlier 确定将硼引入LN炉料的方法对LN:B晶体结构有很大影响。因此,我们研究了通过不同掺杂方法获得的两系列LN:Mg:B晶体的点结构缺陷,其中掺杂剂引入阶段不同。我们研究了硼阳离子在LN:Mg:B单晶中的定位特征。我们使用XRD(X射线衍射)分析进行了这项研究。我们已经证实,均匀掺杂方法在LN:Mg:B单晶结构中引入了额外的缺陷(Mg)。铌位置的空位(V)作为点结构缺陷多余正电荷的补偿而形成。根据模型计算,硼在大多数情况下位于与第一层空铌八面体共用的四面体面上(VO)。在LN:Mg:B晶体(晶体中2.57摩尔% MgO和0.42×10重量% B)中,库仑相互作用能最小;它是使用固相掺杂技术获得的。固相掺杂技术更适合于获得具有双掺杂晶体(LN:Mg:B)特性的含硼晶体。 (注:原文中“earlier”可能有误,推测可能是“earlier”,翻译为“更早地”,但由于不确定,暂按原文翻译)