Suppr超能文献

铌酸锂的最新进展:光损伤、缺陷模拟和片上器件。

Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices.

机构信息

School of Physics, Nankai University, Tianjin, 300071, China.

MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300457, China.

出版信息

Adv Mater. 2020 Jan;32(3):e1806452. doi: 10.1002/adma.201806452. Epub 2019 Jul 7.

Abstract

Lithium niobate (LN) is one of the most important synthetic crystals. In the past two decades, many breakthroughs have been made in material technology, theoretical understanding, and application of LN crystals. Recent progress in optical damage, defect simulation, and on-chip devices of LN are explored. Optical damage is one of the main obstacles for the practical usage of LN crystals. Recent results reveal that doping with ZrO not only leads to better optical damage resistance in the visible but also improves resistance in the ultraviolet region. It is still awkward to extract defect characteristics and their relationship with the physical properties of LN crystals directly from experimental investigations. Recent simulations provide detailed descriptions of intrinsic defect models, the site occupation of dopants and the variation of energy levels due to extrinsic defects. LN is considered to be one of the most promising platforms for integrated photonics. Benefiting from advances in smart-cut, direct wafer bonding and layer transfer techniques, great progress has been made in the past decade for LNs on insulators. Recent progress on on-chip LN micro-photonic devices and nonlinear optical effects, in particular photorefractive effects, are briefly reviewed.

摘要

铌酸锂(LN)是最重要的合成晶体之一。在过去的二十年中,LN 晶体的材料技术、理论理解和应用取得了许多突破。本文探讨了 LN 晶体的光学损伤、缺陷模拟和片上器件的最新进展。光学损伤是 LN 晶体实际应用的主要障碍之一。最近的结果表明,ZrO 掺杂不仅提高了 LN 在可见光区的抗光损伤能力,而且提高了在紫外区的抗光损伤能力。从实验研究中直接提取缺陷特征及其与 LN 晶体物理性质的关系仍然很困难。最近的模拟提供了对本征缺陷模型、掺杂剂的占位和由于外生缺陷引起的能级变化的详细描述。LN 被认为是集成光子学最有前途的平台之一。得益于智能切割、晶圆直接键合和层转移技术的进步,过去十年 LN 在绝缘体上的研究取得了重大进展。本文简要回顾了片上 LN 微光子器件和非线性光学效应,特别是光折变效应的最新进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验