Suppr超能文献

一种采用多尺度滤波方法的用于血管造影图像的稳健血管分割技术。

A Robust Blood Vessel Segmentation Technique for Angiographic Images Employing Multi-Scale Filtering Approach.

作者信息

Paulauskaite-Taraseviciene Agne, Siaulys Julius, Jankauskas Antanas, Jakuskaite Gabriele

机构信息

Artificial Intelligence Centre, Faculty of Informatics, Kaunas University of Technology, 51423 Kaunas, Lithuania.

Centre of Excellence for Sustainable Living and Working (SustAInLivWork), 51423 Kaunas, Lithuania.

出版信息

J Clin Med. 2025 Jan 8;14(2):354. doi: 10.3390/jcm14020354.

Abstract

: This study focuses on the critical task of blood vessel segmentation in medical image analysis, essential for diagnosing cardiovascular diseases and enabling effective treatment planning. Although deep learning architectures often produce very high segmentation results in medical images, coronary computed tomography angiography (CTA) images are more challenging than invasive coronary angiography (ICA) images due to noise and the complexity of vessel structures. : Classical architectures for medical images, such as U-Net, achieve only moderate accuracy, with an average Dice score of 0.722. : This study introduces Morpho-U-Net, an enhanced U-Net architecture that integrates advanced morphological operations, including Gaussian blurring, thresholding, and morphological opening/closing, to improve vascular integrity, reduce noise, and achieve a higher Dice score of 0.9108, a precision of 0.9341, and a recall of 0.8872. These enhancements demonstrate superior robustness to noise and intricate vessel geometries. : This pre-processing filter effectively reduces noise by grouping neighboring pixels with similar intensity values, allowing the model to focus on relevant anatomical structures, thus outperforming traditional methods in handling the challenges posed by CTA images.

摘要

本研究聚焦于医学图像分析中血管分割的关键任务,这对于诊断心血管疾病和制定有效的治疗方案至关重要。尽管深度学习架构在医学图像中通常能产生非常高的分割结果,但冠状动脉计算机断层扫描血管造影(CTA)图像由于噪声和血管结构的复杂性,比有创冠状动脉造影(ICA)图像更具挑战性。经典的医学图像架构,如U-Net,仅能达到中等精度,平均Dice分数为0.722。本研究引入了Morpho-U-Net,这是一种增强的U-Net架构,集成了先进的形态学操作,包括高斯模糊、阈值处理和形态学开/闭运算,以改善血管完整性、减少噪声,并实现更高的Dice分数0.9108、精度0.9341和召回率0.8872。这些增强措施展示了对噪声和复杂血管几何形状的卓越鲁棒性。这种预处理滤波器通过将具有相似强度值的相邻像素分组来有效降低噪声,使模型能够专注于相关的解剖结构,从而在处理CTA图像带来的挑战方面优于传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2611/11765955/8a2140a23c14/jcm-14-00354-g001.jpg

相似文献

6
Vessel filtering and segmentation of coronary CT angiographic images.
Int J Comput Assist Radiol Surg. 2022 Oct;17(10):1879-1890. doi: 10.1007/s11548-022-02655-7. Epub 2022 Jun 28.
7
Simultaneous vessel segmentation and unenhanced prediction using self-supervised dual-task learning in 3D CTA (SVSUP).
Comput Methods Programs Biomed. 2022 Sep;224:107001. doi: 10.1016/j.cmpb.2022.107001. Epub 2022 Jul 3.
8
Automated vessel segmentation in lung CT and CTA images via deep neural networks.
J Xray Sci Technol. 2021;29(6):1123-1137. doi: 10.3233/XST-210955.
9
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.

本文引用的文献

1
Benefit from public unlabeled data: A Frangi filter-based pretraining network for 3D cerebrovascular segmentation.
Med Image Anal. 2025 Apr;101:103442. doi: 10.1016/j.media.2024.103442. Epub 2025 Jan 17.
3
Automatic 3D coronary artery segmentation based on local region active contour model.
J Thorac Dis. 2024 Apr 30;16(4):2563-2579. doi: 10.21037/jtd-24-421. Epub 2024 Apr 28.
4
A novel approach for denoising electrocardiogram signals to detect cardiovascular diseases using an efficient hybrid scheme.
Front Cardiovasc Med. 2024 Apr 4;11:1277123. doi: 10.3389/fcvm.2024.1277123. eCollection 2024.
5
Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data.
Radiol Artif Intell. 2024 Mar;6(2):e230153. doi: 10.1148/ryai.230153.
6
Deep learning for fast super-resolution ultrasound microvessel imaging.
Phys Med Biol. 2023 Dec 12;68(24). doi: 10.1088/1361-6560/ad0a5a.
7
Deep learning for fast denoising filtering in ultrasound localization microscopy.
Phys Med Biol. 2023 Oct 2;68(20). doi: 10.1088/1361-6560/acf98f.
8
Automatic coronary artery segmentation of CCTA images using UNet with a local contextual transformer.
Front Physiol. 2023 Aug 22;14:1138257. doi: 10.3389/fphys.2023.1138257. eCollection 2023.
10
Using DUCK-Net for polyp image segmentation.
Sci Rep. 2023 Jun 16;13(1):9803. doi: 10.1038/s41598-023-36940-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验