Suppr超能文献

一种采用多尺度滤波方法的用于血管造影图像的稳健血管分割技术。

A Robust Blood Vessel Segmentation Technique for Angiographic Images Employing Multi-Scale Filtering Approach.

作者信息

Paulauskaite-Taraseviciene Agne, Siaulys Julius, Jankauskas Antanas, Jakuskaite Gabriele

机构信息

Artificial Intelligence Centre, Faculty of Informatics, Kaunas University of Technology, 51423 Kaunas, Lithuania.

Centre of Excellence for Sustainable Living and Working (SustAInLivWork), 51423 Kaunas, Lithuania.

出版信息

J Clin Med. 2025 Jan 8;14(2):354. doi: 10.3390/jcm14020354.

Abstract

: This study focuses on the critical task of blood vessel segmentation in medical image analysis, essential for diagnosing cardiovascular diseases and enabling effective treatment planning. Although deep learning architectures often produce very high segmentation results in medical images, coronary computed tomography angiography (CTA) images are more challenging than invasive coronary angiography (ICA) images due to noise and the complexity of vessel structures. : Classical architectures for medical images, such as U-Net, achieve only moderate accuracy, with an average Dice score of 0.722. : This study introduces Morpho-U-Net, an enhanced U-Net architecture that integrates advanced morphological operations, including Gaussian blurring, thresholding, and morphological opening/closing, to improve vascular integrity, reduce noise, and achieve a higher Dice score of 0.9108, a precision of 0.9341, and a recall of 0.8872. These enhancements demonstrate superior robustness to noise and intricate vessel geometries. : This pre-processing filter effectively reduces noise by grouping neighboring pixels with similar intensity values, allowing the model to focus on relevant anatomical structures, thus outperforming traditional methods in handling the challenges posed by CTA images.

摘要

本研究聚焦于医学图像分析中血管分割的关键任务,这对于诊断心血管疾病和制定有效的治疗方案至关重要。尽管深度学习架构在医学图像中通常能产生非常高的分割结果,但冠状动脉计算机断层扫描血管造影(CTA)图像由于噪声和血管结构的复杂性,比有创冠状动脉造影(ICA)图像更具挑战性。经典的医学图像架构,如U-Net,仅能达到中等精度,平均Dice分数为0.722。本研究引入了Morpho-U-Net,这是一种增强的U-Net架构,集成了先进的形态学操作,包括高斯模糊、阈值处理和形态学开/闭运算,以改善血管完整性、减少噪声,并实现更高的Dice分数0.9108、精度0.9341和召回率0.8872。这些增强措施展示了对噪声和复杂血管几何形状的卓越鲁棒性。这种预处理滤波器通过将具有相似强度值的相邻像素分组来有效降低噪声,使模型能够专注于相关的解剖结构,从而在处理CTA图像带来的挑战方面优于传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2611/11765955/8a2140a23c14/jcm-14-00354-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验