Suppr超能文献

Spach 转换器:基于局部和全局自注意力的空间和通道转换器,用于 PET 图像去噪。

Spach Transformer: Spatial and Channel-Wise Transformer Based on Local and Global Self-Attentions for PET Image Denoising.

出版信息

IEEE Trans Med Imaging. 2024 Jun;43(6):2036-2049. doi: 10.1109/TMI.2023.3336237. Epub 2024 Jun 3.

Abstract

Position emission tomography (PET) is widely used in clinics and research due to its quantitative merits and high sensitivity, but suffers from low signal-to-noise ratio (SNR). Recently convolutional neural networks (CNNs) have been widely used to improve PET image quality. Though successful and efficient in local feature extraction, CNN cannot capture long-range dependencies well due to its limited receptive field. Global multi-head self-attention (MSA) is a popular approach to capture long-range information. However, the calculation of global MSA for 3D images has high computational costs. In this work, we proposed an efficient spatial and channel-wise encoder-decoder transformer, Spach Transformer, that can leverage spatial and channel information based on local and global MSAs. Experiments based on datasets of different PET tracers, i.e., 18F-FDG, 18F-ACBC, 18F-DCFPyL, and 68Ga-DOTATATE, were conducted to evaluate the proposed framework. Quantitative results show that the proposed Spach Transformer framework outperforms state-of-the-art deep learning architectures.

摘要

正电子发射断层成像术(PET)由于其定量优势和高灵敏度而被广泛应用于临床和研究中,但存在信噪比(SNR)低的问题。最近,卷积神经网络(CNN)已被广泛用于提高 PET 图像质量。尽管在局部特征提取方面取得了成功和高效,但由于其有限的感受野,CNN 无法很好地捕捉远程依赖关系。全局多头自注意力(MSA)是一种捕获远程信息的流行方法。然而,对 3D 图像进行全局 MSA 的计算具有很高的计算成本。在这项工作中,我们提出了一种高效的空间和通道式编码器-解码器转换器 Spach Transformer,它可以基于局部和全局 MSA 利用空间和通道信息。基于不同 PET 示踪剂的数据集,即 18F-FDG、18F-ACBC、18F-DCFPyL 和 68Ga-DOTATATE,进行了实验,以评估所提出的框架。定量结果表明,所提出的 Spach Transformer 框架优于最先进的深度学习架构。

相似文献

2
HCformer: Hybrid CNN-Transformer for LDCT Image Denoising.HCformer:用于 LDCT 图像去噪的混合 CNN-Transformer。
J Digit Imaging. 2023 Oct;36(5):2290-2305. doi: 10.1007/s10278-023-00842-9. Epub 2023 Jun 29.

引用本文的文献

8
Whole-body PET image denoising for reduced acquisition time.用于减少采集时间的全身PET图像去噪
Front Med (Lausanne). 2024 Sep 30;11:1415058. doi: 10.3389/fmed.2024.1415058. eCollection 2024.

本文引用的文献

1
TransMorph: Transformer for unsupervised medical image registration.TransMorph:用于无监督医学图像配准的转换器。
Med Image Anal. 2022 Nov;82:102615. doi: 10.1016/j.media.2022.102615. Epub 2022 Sep 14.
2
A Survey on Vision Transformer.视觉Transformer综述
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):87-110. doi: 10.1109/TPAMI.2022.3152247. Epub 2022 Dec 5.
4
Content-Noise Complementary Learning for Medical Image Denoising.基于内容-噪声互补学习的医学图像去噪
IEEE Trans Med Imaging. 2022 Feb;41(2):407-419. doi: 10.1109/TMI.2021.3113365. Epub 2022 Feb 2.
5
PET Image Denoising Using a Deep Neural Network Through Fine Tuning.通过微调深度学习网络实现PET图像去噪
IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):153-161. doi: 10.1109/TRPMS.2018.2877644. Epub 2018 Oct 23.
7
PET image denoising using unsupervised deep learning.使用无监督深度学习进行 PET 图像去噪。
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2780-2789. doi: 10.1007/s00259-019-04468-4. Epub 2019 Aug 29.
8
PET Image Reconstruction Using Deep Image Prior.基于深度图像先验的 PET 图像重建。
IEEE Trans Med Imaging. 2019 Jul;38(7):1655-1665. doi: 10.1109/TMI.2018.2888491. Epub 2018 Dec 19.
9
Iterative PET Image Reconstruction Using Convolutional Neural Network Representation.基于卷积神经网络表示的迭代 PET 图像重建。
IEEE Trans Med Imaging. 2019 Mar;38(3):675-685. doi: 10.1109/TMI.2018.2869871. Epub 2018 Sep 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验