Suppr超能文献

LDDP-Net:一种具有双解码路径的轻量级神经网络,用于LED芯片缺陷分割

LDDP-Net: A Lightweight Neural Network with Dual Decoding Paths for Defect Segmentation of LED Chips.

作者信息

Zhang Jie, Chen Ning, Li Mengyuan, Zhang Yifan, Suo Xinyu, Li Rong, Liu Jian

机构信息

Mechnical and Vehicle Engineering, Hunan University, Changsha 411082, China.

出版信息

Sensors (Basel). 2025 Jan 13;25(2):425. doi: 10.3390/s25020425.

Abstract

Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field of the MobileNetv3 backbone is modified to mitigate information loss. In addition, dual decoding paths consisting of a coarse decoding path and a fine-grained decoding path in parallel are developed. Specifically, the former employs a straightforward upsampling approach, emphasizing macro information. The latter is more detail-oriented, using multiple pooling and convolution techniques to focus on fine-grained information after deconvolution. Moreover, the integration of intermediate-layer features into the upsampling operation enhances boundary segmentation. Experimental results demonstrate that LDDP-Net achieves an mIoU (mean Intersection over Union) of 90.29% on the chip dataset, with parameter numbers and FLOPs (Floating Point Operations) of 2.98 M and 2.24 G, respectively. Comparative analyses with advanced methods reveal varying degrees of improvement, affirming the effectiveness of the proposed method.

摘要

芯片缺陷检测是半导体生产行业的一个关键方面,因为它对芯片性能有重大影响。本文提出了一种用于LED芯片分割的具有双解码路径的轻量级神经网络,名为LDDP-Net。在LDDP-Net框架内,对MobileNetv3主干的感受野进行了修改,以减少信息损失。此外,还开发了由粗解码路径和细粒度解码路径并行组成的双解码路径。具体来说,前者采用直接的上采样方法,强调宏观信息。后者更注重细节,使用多个池化和卷积技术,在反卷积后专注于细粒度信息。此外,将中间层特征集成到上采样操作中可增强边界分割。实验结果表明,LDDP-Net在芯片数据集上的mIoU(平均交并比)达到90.29%,参数数量和FLOPs(浮点运算)分别为2.98M和2.24G。与先进方法的对比分析显示出不同程度的改进,证实了所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4992/11768909/2acea59e05d0/sensors-25-00425-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验