Zhang Linliang, Xu Shuyun, Li Shuo, Pan Lihu, Gong Su
Shanxi Intelligent Transportation Laboratory Co., Ltd., Taiyuan 030036, China.
Shanxi Intelligent Transportation Institute Co., Ltd., Taiyuan 030036, China.
Sensors (Basel). 2025 Jan 19;25(2):561. doi: 10.3390/s25020561.
Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data. To better capture the dual characteristics of short-term fluctuations and long-term trends in traffic, the model employs the DWT for multi-scale decomposition to obtain approximation and detail coefficients. The Conv-LSTM processes the approximation coefficients to capture the long-term characteristics of the time series, while the multiple layers of the MGDCN process the detail coefficients to capture short-term fluctuations. The outputs of the two branches are then merged to produce the forecast results. The model is tested against 10 algorithms using the PeMSD7(M) and PeMSD7(L) datasets, improving MAE, RMSE, and ACC by an average of 1.38% and 13.89%, 1% and 1.24%, and 5.92% and 1%, respectively. Ablation experiments, parameter impact analysis, and visual analysis all demonstrate the superiority of our decompositional approach in handling the dual characteristics of traffic data.
实时准确的交通流量预测有助于交通规划与设计,并有助于缓解拥堵。针对交通流量预测中部分数据丢失的负面影响以及同时捕捉短期波动和长期趋势的挑战,本文提出了一种基于多图门控扩张卷积和卷积长短期记忆网络(Conv-LSTM)的交通流量预测模型D-MGDCN-CLSTM。该模型使用DTWN算法来填充缺失数据。为了更好地捕捉交通流量中短期波动和长期趋势的双重特征,该模型采用离散小波变换(DWT)进行多尺度分解以获得近似系数和细节系数。Conv-LSTM处理近似系数以捕捉时间序列的长期特征,而多层多图门控扩张卷积网络(MGDCN)处理细节系数以捕捉短期波动。然后将两个分支的输出合并以产生预测结果。使用PeMSD7(M)和PeMSD7(L)数据集针对10种算法对该模型进行了测试,平均而言,平均绝对误差(MAE)、均方根误差(RMSE)和准确率(ACC)分别提高了1.38%和13.89%、1%和1.24%、5.92%和1%。消融实验、参数影响分析和可视化分析均证明了我们的分解方法在处理交通数据双重特征方面的优越性。