Suppr超能文献

基于惯性测量单元支持背心的篮球动作识别

Action Recognition in Basketball with Inertial Measurement Unit-Supported Vest.

作者信息

Sonalcan Hamza, Bilen Enes, Ateş Bahar, Seçkin Ahmet Çağdaş

机构信息

Computer Engineering Department, Engineering Faculty, Aydın Adnan Menderes University, Aydın 09100, Türkiye.

Faculty of Sport Science, Uşak University, Uşak 64100, Türkiye.

出版信息

Sensors (Basel). 2025 Jan 19;25(2):563. doi: 10.3390/s25020563.

Abstract

In this study, an action recognition system was developed to identify fundamental basketball movements using a single Inertial Measurement Unit (IMU) sensor embedded in a wearable vest. This study aims to enhance basketball training by providing a high-performance, low-cost solution that minimizes discomfort for athletes. Data were collected from 21 collegiate basketball players, and movements such as dribbling, passing, shooting, layup, and standing still were recorded. The collected IMU data underwent preprocessing and feature extraction, followed by the application of machine learning algorithms including KNN, decision tree, Random Forest, AdaBoost, and XGBoost. Among these, the XGBoost algorithm with a window size of 250 and a 75% overlap yielded the highest accuracy of 96.6%. The system demonstrated superior performance compared to other single-sensor systems, achieving an overall classification accuracy of 96.9%. This research contributes to the field by presenting a new dataset of basketball movements, comparing the effectiveness of various feature extraction and machine learning methods, and offering a scalable, efficient, and accurate action recognition system for basketball.

摘要

在本研究中,开发了一种动作识别系统,以使用嵌入在可穿戴背心中的单个惯性测量单元(IMU)传感器来识别基本的篮球动作。本研究旨在通过提供一种高性能、低成本的解决方案来增强篮球训练,该方案可最大程度地减少运动员的不适感。从21名大学篮球运动员那里收集了数据,并记录了诸如运球、传球、投篮、上篮和静止站立等动作。对收集到的IMU数据进行了预处理和特征提取,随后应用了包括KNN、决策树、随机森林、AdaBoost和XGBoost在内的机器学习算法。其中,窗口大小为250且重叠率为75%的XGBoost算法产生了最高的96.6%的准确率。与其他单传感器系统相比,该系统表现出卓越的性能,实现了96.9%的总体分类准确率。本研究通过呈现一个新的篮球动作数据集、比较各种特征提取和机器学习方法的有效性以及为篮球提供一个可扩展、高效且准确的动作识别系统,为该领域做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4030/11769260/0858b74a7de8/sensors-25-00563-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验