Suppr超能文献

在共沉淀过程中加入功能化纳米结构聚乳酸-乙醇酸共聚物(PLGA)以提高共配制疏水性药物的溶解度。

Enhancing the Solubility of Co-Formulated Hydrophobic Drugs by Incorporating Functionalized Nano-Structured Poly Lactic--glycolic Acid (PLGA) During Co-Precipitation.

作者信息

Islam Mohammad Saiful, Mitra Somenath

机构信息

Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.

出版信息

Pharmaceutics. 2025 Jan 8;17(1):77. doi: 10.3390/pharmaceutics17010077.

Abstract

: The co-formulation of active pharmaceutical ingredients (APIs) is a growing strategy in biopharmaceutical development, particularly when it comes to improving solubility and bioavailability. This study explores a co-precipitation method to prepare co-formulated crystals of griseofulvin (GF) and dexamethasone (DXM), utilizing nanostructured, functionalized polylactic glycolic acid (PLGA) as a solubility enhancer. : An antisolvent precipitation technique was employed to incorporate PLGA at a 3% concentration into the co-formulated GF and DXM, referred to as DXM-GF-PLGA. The dissolution performance of this formulation was compared to that of the pure drugs and the co-precipitated DXM-GF without PLGA. : Several characterization techniques, including electron microscopy (SEM), RAMAN, FTIR, TGA, and XRD, were used to analyze the PLGA incorporation and the co-precipitated co-formulations. The inclusion of PLGA significantly enhanced the dissolution and initial dissolution rate of both GF and DXM in the DXM-GF-PLGA formulation, achieving a maximum dissolution of 100%, which was not attained by the pure drugs or the DXM-GF formulation. The incorporation of PLGA also reduced the amount of time taken to reach 50% (T) and 80% (T) dissolution. T values decreased from 52 and 82 min (for pure DXM and GF) to 23 min for DXM-GF-PLGA, and the T improved to 50 min for DXM-GF-PLGA, significantly outpacing the pure compounds. Furthermore, incorporating PLGA into the crystal structures greatly accelerated the dissolution rates, with initial rates reaching 650.92 µg/min for DXM-GF-PLGA compared to 540.60 µg/min for DXM-GF, while pure GF and DXM showed lower rates. : This work demonstrates that PLGA incorporation enhances dissolution performance by forming water channels within the API crystal via hydrogen-bonding interactions. This innovative PLGA incorporation method holds promise for developing hydrophobic co-formulations with faster solubility and dissolution rates.

摘要

活性药物成分(API)的联合制剂是生物制药开发中一种不断发展的策略,尤其是在改善溶解度和生物利用度方面。本研究探索了一种共沉淀方法,以纳米结构的功能化聚乳酸 - 乙醇酸共聚物(PLGA)作为溶解度增强剂,制备灰黄霉素(GF)和地塞米松(DXM)的联合制剂晶体。

采用反溶剂沉淀技术,将浓度为3%的PLGA加入到联合制剂GF和DXM中,称为DXM - GF - PLGA。将该制剂的溶出性能与纯药物以及不含PLGA的共沉淀DXM - GF的溶出性能进行了比较。

使用了几种表征技术,包括电子显微镜(SEM)、拉曼光谱、傅里叶变换红外光谱(FTIR)、热重分析(TGA)和X射线衍射(XRD),来分析PLGA的加入情况以及共沉淀的联合制剂。在DXM - GF - PLGA制剂中,PLGA的加入显著提高了GF和DXM的溶出度和初始溶出速率,最大溶出度达到100%,这是纯药物或DXM - GF制剂所未达到的。PLGA的加入还减少了达到50%(T)和80%(T)溶出度所需的时间。T值从52分钟和82分钟(分别针对纯DXM和GF)降至DXM - GF - PLGA的23分钟,T提高到DXM - GF - PLGA的50分钟,明显超过纯化合物。此外,将PLGA引入晶体结构极大地加快了溶出速率,DXM - GF - PLGA的初始速率达到650.92μg/分钟,而DXM - GF为540.60μg/分钟,而纯GF和DXM的速率较低。

这项工作表明,通过氢键相互作用在API晶体内形成水通道,PLGA的加入提高了溶出性能。这种创新的PLGA加入方法有望开发出具有更快溶解度和溶出速率的疏水联合制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e51/11768099/3dce5e68d056/pharmaceutics-17-00077-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验