Smaruj Paulina N, Xiao Yao, Fudenberg Geoffrey
Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
Curr Opin Genet Dev. 2025 Apr;91:102308. doi: 10.1016/j.gde.2024.102308. Epub 2025 Jan 24.
Three-dimensional genome folding plays roles in gene regulation and disease. In this review, we compare and contrast recent deep learning models for predicting genome contact maps. We survey preprocessing, architecture, training, evaluation, and interpretation methods, highlighting the capabilities and limitations of different models. In each area, we highlight challenges, opportunities, and potential future directions for genome-folding models.
三维基因组折叠在基因调控和疾病中发挥作用。在这篇综述中,我们比较并对比了近期用于预测基因组接触图谱的深度学习模型。我们概述了预处理、架构、训练、评估和解释方法,突出了不同模型的能力和局限性。在每个领域,我们都强调了基因组折叠模型面临的挑战、机遇以及潜在的未来发展方向。