Suppr超能文献

三维基因组折叠深度学习模型的方法和要素

Recipes and ingredients for deep learning models of 3D genome folding.

作者信息

Smaruj Paulina N, Xiao Yao, Fudenberg Geoffrey

机构信息

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.

出版信息

Curr Opin Genet Dev. 2025 Apr;91:102308. doi: 10.1016/j.gde.2024.102308. Epub 2025 Jan 24.

Abstract

Three-dimensional genome folding plays roles in gene regulation and disease. In this review, we compare and contrast recent deep learning models for predicting genome contact maps. We survey preprocessing, architecture, training, evaluation, and interpretation methods, highlighting the capabilities and limitations of different models. In each area, we highlight challenges, opportunities, and potential future directions for genome-folding models.

摘要

三维基因组折叠在基因调控和疾病中发挥作用。在这篇综述中,我们比较并对比了近期用于预测基因组接触图谱的深度学习模型。我们概述了预处理、架构、训练、评估和解释方法,突出了不同模型的能力和局限性。在每个领域,我们都强调了基因组折叠模型面临的挑战、机遇以及潜在的未来发展方向。

相似文献

1
Recipes and ingredients for deep learning models of 3D genome folding.三维基因组折叠深度学习模型的方法和要素
Curr Opin Genet Dev. 2025 Apr;91:102308. doi: 10.1016/j.gde.2024.102308. Epub 2025 Jan 24.
3
Deep learning for RNA structure prediction.用于RNA结构预测的深度学习
Curr Opin Struct Biol. 2025 Apr;91:102991. doi: 10.1016/j.sbi.2025.102991. Epub 2025 Feb 10.
6
Predicting RNA SHAPE scores with deep learning.用深度学习预测 RNA SHAPE 分数。
RNA Biol. 2020 Sep;17(9):1324-1330. doi: 10.1080/15476286.2020.1760534. Epub 2020 May 31.
10
RNA structure prediction using deep learning - A comprehensive review.使用深度学习进行RNA结构预测——全面综述。
Comput Biol Med. 2025 Apr;188:109845. doi: 10.1016/j.compbiomed.2025.109845. Epub 2025 Feb 20.

本文引用的文献

1
Interpreting the CTCF-mediated sequence grammar of genome folding with AkitaV2.使用AkitaV2解释由CTCF介导的基因组折叠序列语法。
PLoS Comput Biol. 2025 Feb 4;21(2):e1012824. doi: 10.1371/journal.pcbi.1012824. eCollection 2025 Feb.
2
Genomic language models: opportunities and challenges.基因组语言模型:机遇与挑战。
Trends Genet. 2025 Apr;41(4):286-302. doi: 10.1016/j.tig.2024.11.013. Epub 2025 Jan 2.
6
Cooltools: Enabling high-resolution Hi-C analysis in Python.酷工具:在 Python 中实现高分辨率 Hi-C 分析。
PLoS Comput Biol. 2024 May 6;20(5):e1012067. doi: 10.1371/journal.pcbi.1012067. eCollection 2024 May.
8
Design principles of 3D epigenetic memory systems.三维表观遗传记忆系统的设计原则。
Science. 2023 Nov 17;382(6672):eadg3053. doi: 10.1126/science.adg3053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验