Suppr超能文献

利用深度学习探索 RNA 在染色质结构中的作用。

Exploring the roles of RNAs in chromatin architecture using deep learning.

机构信息

Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.

Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA.

出版信息

Nat Commun. 2024 Jul 29;15(1):6373. doi: 10.1038/s41467-024-50573-w.

Abstract

Recent studies have highlighted the impact of both transcription and transcripts on 3D genome organization, particularly its dynamics. Here, we propose a deep learning framework, called AkitaR, that leverages both genome sequences and genome-wide RNA-DNA interactions to investigate the roles of chromatin-associated RNAs (caRNAs) on genome folding in HFFc6 cells. In order to disentangle the cis- and trans-regulatory roles of caRNAs, we have compared models with nascent transcripts, trans-located caRNAs, open chromatin data, or DNA sequence alone. Both nascent transcripts and trans-located caRNAs improve the models' predictions, especially at cell-type-specific genomic regions. Analyses of feature importance scores reveal the contribution of caRNAs at TAD boundaries, chromatin loops and nuclear sub-structures such as nuclear speckles and nucleoli to the models' predictions. Furthermore, we identify non-coding RNAs (ncRNAs) known to regulate chromatin structures, such as MALAT1 and NEAT1, as well as several new RNAs, RNY5, RPPH1, POLG-DT and THBS1-IT1, that might modulate chromatin architecture through trans-interactions in HFFc6. Our modeling also suggests that transcripts from Alus and other repetitive elements may facilitate chromatin interactions through trans R-loop formation. Our findings provide insights and generate testable hypotheses about the roles of caRNAs in shaping chromatin organization.

摘要

最近的研究强调了转录和转录本对 3D 基因组组织的影响,特别是其动态变化。在这里,我们提出了一个名为 AkitaR 的深度学习框架,该框架利用基因组序列和全基因组 RNA-DNA 相互作用来研究染色质相关 RNA(caRNA)在 HFFc6 细胞中基因组折叠中的作用。为了区分 caRNA 的顺式和反式调控作用,我们比较了具有新生转录本、转位 caRNA、开放染色质数据或单独 DNA 序列的模型。新生转录本和转位 caRNA 都可以提高模型的预测能力,尤其是在细胞类型特异性基因组区域。特征重要性得分的分析揭示了 caRNA 在 TAD 边界、染色质环和核亚结构(如核斑点和核仁)处对模型预测的贡献。此外,我们还鉴定了一些已知调节染色质结构的非编码 RNA(ncRNA),如 MALAT1 和 NEAT1,以及一些新的 RNA,如 RNY5、RPPH1、POLG-DT 和 THBS1-IT1,它们可能通过 HFFc6 中的反式相互作用来调节染色质结构。我们的建模还表明,Alu 和其他重复元件的转录本可能通过反式 R 环形成促进染色质相互作用。我们的研究结果提供了关于 caRNA 在塑造染色质组织中的作用的见解,并提出了可测试的假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3669/11286850/838e19f4c49f/41467_2024_50573_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验