Suppr超能文献

一项利用深度学习进行1型神经纤维瘤病全身肿瘤识别的多中心研究。

A multicenter study of neurofibromatosis type 1 utilizing deep learning for whole body tumor identification.

作者信息

Wei Cheng-Jiang, Tang Yan, Sun Yang-Bai, Yang Tie-Long, Yan Cheng, Liu Hui, Liu Jun, Huang Jing-Ning, Wang Ming-Han, Yao Zhen-Wei, Yang Ji-Long, Wang Zhi-Chao, Li Qing-Feng

机构信息

Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

NPJ Digit Med. 2025 Jan 26;8(1):56. doi: 10.1038/s41746-025-01454-z.

Abstract

Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background. In a Chinese seven-center cohort, data from 347 subjects were analyzed. Our one-step model incorporated normal tissue/organ labels to provide contextual information, offering a solution for tumors with complex backgrounds. To address privacy concerns, we utilized a lightweight deep neural network suitable for hospital deployment. The final model achieved an accuracy of 85.71% for MPNST diagnosis in the validation cohort and 84.75% accuracy in the independent test set, outperforming another classic two-step model. This success suggests potential for AI models in screening other whole-body primary/metastatic tumors.

摘要

深度学习模型在区分良性和恶性病变方面已显示出前景。先前的研究主要集中在特定的解剖区域,忽略了在全身高度异质性背景下发生的肿瘤。以1型神经纤维瘤病(NF1)为例,本研究开发了基于MRI的高精度深度学习模型,用于在复杂的全身背景下早期自动筛查恶性外周神经鞘瘤(MPNST)。在中国的一个七中心队列中,分析了347名受试者的数据。我们的一步模型纳入了正常组织/器官标签以提供背景信息,为具有复杂背景的肿瘤提供了一种解决方案。为了解决隐私问题,我们采用了适合医院部署的轻量级深度神经网络。最终模型在验证队列中对MPNST诊断的准确率达到85.71%,在独立测试集中的准确率为84.75%,优于另一个经典的两步模型。这一成功表明人工智能模型在筛查其他全身原发性/转移性肿瘤方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/347a/11763078/194f74180498/41746_2025_1454_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验