Suppr超能文献

运用深度学习和迁移学习进行精确的脑肿瘤检测。

Employing deep learning and transfer learning for accurate brain tumor detection.

机构信息

School of Computer Science and Engineering, Galgotias University, Greater Noida, 203201, India.

Department of Computer Science and Engineering, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India.

出版信息

Sci Rep. 2024 Mar 27;14(1):7232. doi: 10.1038/s41598-024-57970-7.

Abstract

Artificial intelligence-powered deep learning methods are being used to diagnose brain tumors with high accuracy, owing to their ability to process large amounts of data. Magnetic resonance imaging stands as the gold standard for brain tumor diagnosis using machine vision, surpassing computed tomography, ultrasound, and X-ray imaging in its effectiveness. Despite this, brain tumor diagnosis remains a challenging endeavour due to the intricate structure of the brain. This study delves into the potential of deep transfer learning architectures to elevate the accuracy of brain tumor diagnosis. Transfer learning is a machine learning technique that allows us to repurpose pre-trained models on new tasks. This can be particularly useful for medical imaging tasks, where labelled data is often scarce. Four distinct transfer learning architectures were assessed in this study: ResNet152, VGG19, DenseNet169, and MobileNetv3. The models were trained and validated on a dataset from benchmark database: Kaggle. Five-fold cross validation was adopted for training and testing. To enhance the balance of the dataset and improve the performance of the models, image enhancement techniques were applied to the data for the four categories: pituitary, normal, meningioma, and glioma. MobileNetv3 achieved the highest accuracy of 99.75%, significantly outperforming other existing methods. This demonstrates the potential of deep transfer learning architectures to revolutionize the field of brain tumor diagnosis.

摘要

人工智能驱动的深度学习方法正在被用于高精度地诊断脑肿瘤,这要归功于它们处理大量数据的能力。磁共振成像(MRI)是使用机器视觉诊断脑肿瘤的金标准,其在有效性上超过了计算机断层扫描(CT)、超声和 X 射线成像。尽管如此,由于大脑结构复杂,脑肿瘤的诊断仍然是一项具有挑战性的工作。本研究探讨了深度迁移学习架构在提高脑肿瘤诊断准确性方面的潜力。迁移学习是一种机器学习技术,它允许我们在新任务上重新使用预先训练好的模型。对于医学成像任务来说,这可能特别有用,因为这类任务通常缺乏标记数据。本研究评估了四种不同的迁移学习架构:ResNet152、VGG19、DenseNet169 和 MobileNetv3。模型在基准数据库 Kaggle 的数据集上进行了训练和验证。采用五折交叉验证进行训练和测试。为了增强数据集的平衡性并提高模型的性能,对四个类别(垂体、正常、脑膜瘤和神经胶质瘤)的数据应用了图像增强技术。MobileNetv3 实现了最高的准确率 99.75%,明显优于其他现有方法。这表明深度迁移学习架构有潜力彻底改变脑肿瘤诊断领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c62/10973383/6ec677e6b1d8/41598_2024_57970_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验