Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Neuro Oncol. 2022 Oct 3;24(10):1790-1798. doi: 10.1093/neuonc/noac100.
Patients with neurofibromatosis type 1 (NF1) develop benign (BPNST), premalignant atypical (ANF), and malignant (MPNST) peripheral nerve sheath tumors. Radiological differentiation of these entities is challenging. Therefore, we aimed to evaluate the value of a magnetic resonance imaging (MRI)-based radiomics machine-learning (ML) classifier for differentiation of these three entities of internal peripheral nerve sheath tumors in NF1 patients.
MRI was performed at 3T in 36 NF1 patients (20 male; age: 31 ± 11 years). Segmentation of 117 BPNSTs, 17 MPNSTs, and 8 ANFs was manually performed using T2w spectral attenuated inversion recovery sequences. One hundred seven features per lesion were extracted using PyRadiomics and applied for BPNST versus MPNST differentiation. A 5-feature radiomics signature was defined based on the most important features and tested for signature-based BPNST versus MPNST classification (random forest [RF] classification, leave-one-patient-out evaluation). In a second step, signature feature expressions for BPNSTs, ANFs, and MPNSTs were evaluated for radiomics-based classification for these three entities.
The mean area under the receiver operator characteristic curve (AUC) for the radiomics-based BPNST versus MPNST differentiation was 0.94, corresponding to correct classification of on average 16/17 MPNSTs and 114/117 BPNSTs (sensitivity: 94%, specificity: 97%). Exploratory analysis with the eight ANFs revealed intermediate radiomic feature characteristics in-between BPNST and MPNST tumor feature expression.
In this proof-of-principle study, ML using MRI-based radiomics characteristics allows sensitive and specific differentiation of BPNSTs and MPNSTs in NF1 patients. Feature expression of premalignant atypical tumors was distributed in-between benign and malignant tumor feature expressions, which illustrates biological plausibility of the considered radiomics characteristics.
神经纤维瘤病 1 型(NF1)患者会发生良性(BPNST)、潜在恶性非典型(ANF)和恶性(MPNST)周围神经鞘瘤。这些实体的影像学鉴别具有挑战性。因此,我们旨在评估基于磁共振成像(MRI)的放射组学机器学习(ML)分类器在 NF1 患者中区分这三种内部周围神经鞘瘤实体的价值。
36 名 NF1 患者(20 名男性;年龄:31±11 岁)在 3T 上进行 MRI 检查。使用 T2w 光谱衰减反转恢复序列手动对 117 个 BPNST、17 个 MPNST 和 8 个 ANF 进行分割。使用 PyRadiomics 对每个病变提取 107 个特征,并应用于 BPNST 与 MPNST 的鉴别。基于最重要的特征,定义了一个 5 个特征的放射组学特征签名,并对基于签名的 BPNST 与 MPNST 分类(随机森林[RF]分类,每位患者留一评估)进行了测试。在第二步中,评估了 BPNST、ANF 和 MPNST 的签名特征表达,以用于这三种实体的基于放射组学的分类。
基于放射组学的 BPNST 与 MPNST 鉴别诊断的受试者工作特征曲线(ROC)下面积(AUC)的平均值为 0.94,平均正确分类 16/17 个 MPNST 和 114/117 个 BPNST(敏感性:94%,特异性:97%)。对 8 个 ANF 的探索性分析表明,其在 BPNST 和 MPNST 肿瘤特征表达之间具有中间放射组学特征。
在这项原理验证研究中,使用基于 MRI 的放射组学特征的 ML 可实现 NF1 患者中 BPNST 和 MPNST 的敏感和特异性鉴别。潜在恶性非典型肿瘤的特征表达分布在良性和恶性肿瘤特征表达之间,这说明了所考虑的放射组学特征的生物学合理性。