Suppr超能文献

微生物碳水化合物活性酶通过调节不同水分条件下高原泥炭湿地中植物和真菌来源生物量的分解来影响土壤碳。

Microbial carbohydrate-active enzymes influence soil carbon by regulating the of plant- and fungal-derived biomass decomposition in plateau peat wetlands under differing water conditions.

作者信息

Xiong Mingyao, Jiang Wei, Zou Shuzhen, Kang Di, Yan Xianchun

机构信息

Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.

出版信息

Front Microbiol. 2023 Sep 4;14:1266016. doi: 10.3389/fmicb.2023.1266016. eCollection 2023.

Abstract

Peatlands are important carbon sinks and water sources in terrestrial ecosystems. It is important to explore their microbial-driven water-carbon synergistic mechanisms to understand the driving mechanisms of carbon processes in peatlands. Based on macrogenomic sequencing techniques, located on the peatland of the eastern margin of the Tibetan Plateau with similar stand and different water conditions, we taken soil properties, microbiome abundance, CAZyme abundance and enzyme gene pathways as the object of study, investigated the characterization of soil microbial carbohydrate-active enzymes (CAZymes) under different water gradients in peatland. According to the results, these three phyla (Chloroflexi, Gemmatimonadetes, and Verrucomicrobia) differed significantly between water gradients. Under dried wetlands, the abundance of CAZymes involved in hemicellulose and glucan degradation increased by 3.0 × 10 and 3.0 × 10, respectively. In contrast, the abundance of CAZymes involved in chitin degradation decreased by 1.1 × 10 ( < 0.05). It highlights that regulating plant- and fungus-derived carbon metabolism processes by soil microorganisms in highland peatlands is a crucial mechanism for their response to water changes. Most plant-derived carbon fractions are regulated by soil enzymes (endo-beta 1,4-xylanase, alpha-L-arabinofuranosidase, and alpha-L-fucosidase) containing CAZymes functional genes. Additional findings in this enzyme gene pathway indicate that water changes that affect soil carbon fractions indirectly influence the three enzyme gene metabolic pathways related to plant carbon sources (the glycolysis/gluconeogenesis, other glycan degradation and amino sugar, and nucleotide sugar metabolism). Overall, this study highlights the significance of microbial CAZymes in highland peatland soil carbon processes and indicates that microbial conversion of plant and fungal biomass carbon is more sensitive to water changes.

摘要

泥炭地是陆地生态系统中重要的碳汇和水源地。探索其微生物驱动的水 - 碳协同机制对于理解泥炭地碳过程的驱动机制至关重要。基于宏基因组测序技术,在青藏高原东缘具有相似林分和不同水分条件的泥炭地上,我们以土壤性质、微生物群落丰度、碳水化合物活性酶(CAZyme)丰度和酶基因途径为研究对象,调查了泥炭地不同水分梯度下土壤微生物碳水化合物活性酶(CAZyme)的特征。结果显示,这三个门(绿弯菌门、芽单胞菌门和疣微菌门)在水分梯度间存在显著差异。在干燥湿地条件下,参与半纤维素和葡聚糖降解的CAZyme丰度分别增加了3.0×10和3.0×10。相反,参与几丁质降解的CAZyme丰度降低了1.1×10(P<0.05)。这突出表明,高地泥炭地土壤微生物对植物和真菌衍生碳代谢过程的调节是它们对水分变化响应的关键机制。大多数植物衍生的碳组分受含有CAZyme功能基因的土壤酶(内切 - β - 1,4 - 木聚糖酶、α - L - 阿拉伯呋喃糖苷酶和α - L - 岩藻糖苷酶)调控。该酶基因途径的其他研究结果表明,影响土壤碳组分的水分变化间接影响了与植物碳源相关的三个酶基因代谢途径(糖酵解/糖异生、其他聚糖降解以及氨基糖和核苷酸糖代谢)。总体而言,本研究突出了微生物CAZyme在高地泥炭地土壤碳过程中的重要性,并表明植物和真菌生物量碳的微生物转化对水分变化更为敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0591/10507343/95e82f0f31f3/fmicb-14-1266016-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验