Zeng Christina M, Panetier Julien A
The Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States.
Acc Chem Res. 2025 Feb 4;58(3):342-353. doi: 10.1021/acs.accounts.4c00631. Epub 2025 Jan 27.
ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function. We also discuss how computational techniques provide crucial insight into implementing these findings in homogeneous CO reduction electrocatalysis design principles. The CO binding sites (e.g., Ni and "unique" Fe ion) along with the ligands that support it (e.g., iron-sulfur cluster) form the primary coordination sphere. This is replicated in molecular electrocatalysts via the metal center and ligand framework where the substrate binds. This coordination sphere has a direct impact on the electronic configuration of the catalyst. By computationally modeling a series of Ni and Co complexes with bipyridyl--heterocyclic carbene ligand frameworks of varying degrees of planarity, we were able to closely examine how the primary coordination sphere controls the product distribution between CO and H for these catalysts. The secondary coordination sphere (SCS) of Ni,Fe-CODH contains residues proximal to the active site pocket that provide hydrogen-bonding stabilizations necessary for the reaction to proceed. Enhancing the SCS when synthesizing new catalysts involves substituting functional groups onto the ligand for direct interaction with the substrate. To analyze the endless possible substitutions, computational techniques are ideal for deciphering the intricacies of substituent effects, as we demonstrated with an array of imidazolium-functionalized Mn and Re bipyridyl tricarbonyl complexes. By examining how the electrostatic interactions between the ligand, substrate, and proton source lowered activation energy barriers, we determined how best to pinpoint the SCS additions. The outer coordination sphere comprises the remaining parts of Ni,Fe-CODH, such as the elaborate protein matrix, solvent interactions, and remote metalloclusters. The challenge in elucidating and replicating the role of the vast protein matrix has understandably led to a localized focus on the primary and secondary coordination spheres. However, certain portions of Ni,Fe-CODH's expansive protein scaffold are suggested to be catalytically relevant despite considerable distance from the active site. Closer studies of these relatively overlooked areas of nature's exceptionally proficient catalysts may be crucial to continually improve upon electrocatalysis protocols. Mechanistic analysis of cobalt phthalocyanines (CoPc) immobilized onto carbon nanotubes (CoPc/CNT) reveals how the active site microenvironment and outer coordination sphere effects unlock the CoPc molecule's previously inaccessible intrinsic catalytic ability to convert CO to MeOH. Our research suggests that incorporating the three coordination spheres in a holistic approach may be vital for advancing electrocatalysis toward viability in mitigating climate disruption. Computational methods allow us to closely examine transition states and determine how to minimize key activation energy barriers.
概述
在寻找能够将温室气体转化为高附加值产品的高效且选择性的电催化剂过程中,天然存在的细菌中发现的酶为大多数电催化剂设计方法提供了基础。镍铁一氧化碳脱氢酶(Ni,Fe-CODH)就是这样一种酶,它具有一个名为C簇的镍铁硫簇,一氧化碳在该簇处结合,并在接近热力学电位的条件下以高速率转化为二氧化碳。在本综述中,我们根据位置和功能将该酶的催化作用分为三类。我们还将讨论计算技术如何为在均相一氧化碳还原电催化设计原则中应用这些发现提供关键见解。一氧化碳结合位点(例如镍和“独特”的铁离子)以及支持它的配体(例如铁硫簇)形成了初级配位层。这通过底物结合的金属中心和配体框架在分子电催化剂中得以复制。这个配位层对催化剂的电子构型有直接影响。通过对一系列具有不同平面度的联吡啶 - 杂环卡宾配体框架的镍和钴配合物进行计算建模,我们能够仔细研究初级配位层如何控制这些催化剂在一氧化碳和氢气之间的产物分布。Ni,Fe-CODH的次级配位层(SCS)包含靠近活性位点口袋的残基,这些残基为反应进行提供了必要的氢键稳定作用。在合成新催化剂时增强SCS涉及将官能团取代到配体上以与底物直接相互作用。为了分析无尽的可能取代,计算技术是解读取代基效应复杂性的理想选择,正如我们用一系列咪唑鎓功能化的锰和铼联吡啶三羰基配合物所证明的那样。通过研究配体、底物和质子源之间的静电相互作用如何降低活化能垒,我们确定了如何最好地确定SCS添加物。外部配位层包括Ni,Fe-CODH的其余部分,例如精细的蛋白质基质、溶剂相互作用和远程金属簇。阐明和复制庞大蛋白质基质的作用面临的挑战导致了对初级和次级配位层的局部关注。然而,尽管与活性位点有相当距离,但Ni,Fe-CODH庞大蛋白质支架的某些部分被认为具有催化相关性。对这些自然中异常高效催化剂相对被忽视的区域进行更深入研究可能对于不断改进电催化方案至关重要。固定在碳纳米管上(CoPc/CNT)的钴酞菁(CoPc)的机理分析揭示了活性位点微环境和外部配位层效应如何释放CoPc分子以前无法获得的将一氧化碳转化为甲醇的内在催化能力。我们的研究表明,以整体方法纳入这三个配位层对于推动电催化在缓解气候破坏方面实现可行性可能至关重要。计算方法使我们能够仔细研究过渡态并确定如何最小化关键活化能垒。