Srinivasan Dhineshkumar, Rasu Chettiar Aruna-Devi, Vincent Mercy Eupsy Navis, Marasamy Latha
Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, Santiago de Querétaro, C.P.76010, Querétaro, México.
Sci Rep. 2025 Jan 27;15(1):3454. doi: 10.1038/s41598-024-80473-4.
ABSchalcogenide perovskites (CPs) are emerging as promising alternatives to lead halide perovskites due to their unique properties. However, their bandgap exceeds the Shockley-Queisser limit. By substituting S with Se, the bandgap is significantly reduced, shifting it from the visible into the near-infrared region. Hence, we have investigated the potential of Se-based absorbers with device structure FTO/TiO/ABSe(A = Ca, Ba; B = Zr, Hf)/NiO/Au using SCAPS-1D. We analyzed the critical parameters impacting each layer of the solar cell. Notably, we achieved an enhanced light absorption (~ 26.5%) at an optimal absorber thickness (500 nm), intensifying carrier generation. Additionally, we observed an increase in V(1.03 V) due to improved quasi-Fermi level splitting and a reduction in energy loss (0.45 V) across all solar cells with an optimal absorber carrier concentration (10cm). Overall, the optimization resulted in improvements in PCE by the difference of 20.14%, 20.44%, 14.33%, and 14.56% for CaZrSe, BaZrSe, CaHfSe, and BaHfSesolar cells, respectively. The maximum PCE of over 30% was attained for both CaZrSeand BaZrSesolar cells, attributed to their narrow bandgap, enhanced light absorption (53.60%), high J(29 mA/cm), and elevated generation rate of 1.19 × 10cms. Thus, these significant outcomes highlight the potential of these absorbers for fabricating high-efficiency CP solar cells.
AB硫族钙钛矿(CPs)因其独特性能正成为卤化铅钙钛矿的有前景的替代物。然而,它们的带隙超过了肖克利-奎塞尔极限。通过用硒替代硫,带隙显著减小,使其从可见光区域转移到近红外区域。因此,我们使用SCAPS-1D研究了具有FTO/TiO/ABSe(A = Ca、Ba;B = Zr、Hf)/NiO/Au器件结构的硒基吸收体的潜力。我们分析了影响太阳能电池各层的关键参数。值得注意的是,在最佳吸收体厚度(500纳米)下实现了增强的光吸收(约26.5%),强化了载流子产生。此外,由于准费米能级分裂得到改善,我们观察到所有太阳能电池的开路电压(1.03伏)有所增加,并且在最佳吸收体载流子浓度(10厘米)下能量损失(0.45伏)有所降低。总体而言,优化使得CaZrSe、BaZrSe、CaHfSe和BaHfSe太阳能电池的光电转换效率分别提高了20.14%、20.44%、14.33%和14.56%。CaZrSe和BaZrSe太阳能电池均实现了超过30%的最大光电转换效率,这归因于它们的窄带隙、增强的光吸收(53.60%)、高电流密度(29毫安/平方厘米)以及1.19×10厘米的高产生率。因此,这些显著成果突出了这些吸收体用于制造高效CP太阳能电池的潜力。