Vincent Mercy Eupsy Navis, Srinivasan Dhineshkumar, Marasamy Latha
Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro C.P. 76010, México.
ACS Omega. 2024 Jan 17;9(4):4359-4376. doi: 10.1021/acsomega.3c06627. eCollection 2024 Jan 30.
BaZrS chalcogenide perovskites have emerged as a promising absorber due to their exceptional properties. However, there are no experimental reports on the applicability of BaZrS in photovoltaics. Thus, theoretical knowledge of device structure engineering is essential for its successful fabrication. In this regard, we have proposed various BaZrS device configurations by altering 12 electron transport layers (ETLs) in combination with 13 hole transport layers (HTLs) using SCAPS-1D, wherein a total of 782 devices are simulated by tuning the thickness, carrier concentration, and defect density of BaZrS, ETLs, and HTLs. Interestingly, the absorber's thickness optimization enhanced the absorption in the device by 2.31 times, elevating the generation rate of charge carriers, while the increase in its carrier concentration boosted the built-in potential from 0.8 to 1.68 V, reducing the accumulation of charge carriers at the interfaces. Notably, on further optimization of ETL and HTL combinations, the best power conversion efficiency (PCE) of 28.08% is achieved for FTO/ZrS/BaZrS/SnS/Au, occurring due to the suppressed barrier height of 0.1 eV at the ZrS/BaZrS interface and degenerate behavior of SnS, which increased charge carrier transportation and conductivity of the devices. Upon optimizing the work function, an ohmic contact is achieved for Pt, boosting the PCE to 28.17%. Finally, the impact of Ti alloying on BaZrS properties is examined on the champion FTO/ZrS/BaZrS/SnS/Pt device where the maximum PCE of 32.58% is obtained for Ba(Zr,Ti)S at a thickness of 700 nm due to extended absorption in the NIR region. Thus, this work opens doors to researchers for the experimental realization of high PCE in BaZrS devices.
硫族钙钛矿BaZrS因其优异的性能已成为一种有前途的吸收体。然而,目前尚无关于BaZrS在光伏领域适用性的实验报告。因此,器件结构工程的理论知识对其成功制备至关重要。在这方面,我们使用SCAPS-1D通过改变12种电子传输层(ETL)并结合13种空穴传输层(HTL)提出了各种BaZrS器件配置,其中通过调整BaZrS、ETL和HTL的厚度、载流子浓度和缺陷密度,总共模拟了782个器件。有趣的是,吸收体厚度的优化使器件中的吸收增强了2.31倍,提高了电荷载流子的产生率,而其载流子浓度的增加将内建电势从0.8 V提高到1.68 V,减少了界面处电荷载流子的积累。值得注意的是,在进一步优化ETL和HTL组合后,FTO/ZrS/BaZrS/SnS/Au实现了28.08%的最佳功率转换效率(PCE),这是由于ZrS/BaZrS界面处0.1 eV的势垒高度受到抑制以及SnS的简并行为,从而提高了器件的电荷载流子传输和电导率。在优化功函数后,Pt实现了欧姆接触,将PCE提高到28.17%。最后,在冠军器件FTO/ZrS/BaZrS/SnS/Pt上研究了Ti合金化对BaZrS性能的影响,由于在近红外区域吸收增强,对于厚度为700 nm的Ba(Zr,Ti)S,获得了32.58%的最大PCE。因此,这项工作为研究人员在BaZrS器件中实现高PCE的实验实现打开了大门。