Suppr超能文献

机器学习预测将成为未来抑郁症治疗的一部分。

Machine learning prediction will be part of future treatment of depression.

机构信息

Department of Psychiatry, University of Oxford, Oxford, UK.

Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.

出版信息

Aust N Z J Psychiatry. 2023 Oct;57(10):1316-1323. doi: 10.1177/00048674231158267. Epub 2023 Feb 23.

Abstract

Machine learning (ML) is changing the way that medicine is practiced. While already clinically utilised in diagnostic radiology and outcome prediction in intensive care unit, ML approaches in psychiatry remain nascent. Implementing ML algorithms in psychiatry, particularly in the treatment of depression, is significantly more challenging than other areas of medicine in part because of the less demarcated disease nosology and greater variability in practice. Given the current exiguous capacity of clinicians to predict patient and treatment outcomes in depression, there is a significantly greater need for better predictive capability. Early studies have shown promising results. ML predictions were significantly better than chance within the sequenced treatment alternatives to relieve depression (STAR*D) trial (accuracy 64.6%,  < 0.0001) and combining medications to enhance depression outcomes (COMED) randomised Controlled Trial (RCT) (accuracy 59.6%,  = 0.043), with similar results found in larger scale, retrospective studies. The greater flexibility and dimensionality of ML approaches has been demonstrated in studies incorporating diverse input variables including electroencephalography scans, achieving 88% accuracy for treatment response, and cognitive test scores, achieving up to 72% accuracy for treatment response. The predicting response to depression treatment (PReDicT) trial tested ML informed prescribing of antidepressants against standard therapy and found there was both better outcomes for anxiety and functional endpoints despite the algorithm only having a balanced accuracy of 57.5%. Impeding the progress of ML algorithms in psychiatry are pragmatic hurdles, including accuracy, expense, acceptability and comprehensibility, and ethical hurdles, including medicolegal liability, clinical autonomy and data privacy. Notwithstanding impediments, it is clear that ML prediction algorithms will be part of depression treatment in the future and clinicians should be prepared for their arrival.

摘要

机器学习(ML)正在改变医学实践的方式。虽然在诊断放射学和重症监护病房的预后预测中已经得到临床应用,但精神科的 ML 方法仍处于起步阶段。在精神科实施 ML 算法,特别是在治疗抑郁症方面,比其他医学领域更具挑战性,部分原因是疾病分类学的界定不明确,以及实践中的变异性更大。鉴于目前临床医生预测抑郁症患者和治疗结果的能力有限,因此需要更好的预测能力。早期研究已经显示出有希望的结果。在顺序治疗选择以缓解抑郁(STAR*D)试验(准确性 64.6%, < 0.0001)和联合药物以增强抑郁结局(COMED)随机对照试验(RCT)(准确性 59.6%, = 0.043)中,ML 预测明显优于机会,并且在更大规模、回顾性研究中也发现了类似的结果。在纳入包括脑电图扫描在内的各种输入变量的研究中,ML 方法的更大灵活性和多维性已经得到了证明,实现了治疗反应的 88%的准确性,以及认知测试分数,实现了高达 72%的治疗反应的准确性。预测抑郁症治疗反应(PReDicT)试验测试了 ML 指导的抗抑郁药处方与标准治疗的比较,发现尽管算法的平衡准确性仅为 57.5%,但焦虑和功能终点的结果都更好。阻碍精神科 ML 算法发展的是实际障碍,包括准确性、费用、可接受性和可理解性,以及伦理障碍,包括医疗法律责任、临床自主性和数据隐私。尽管存在障碍,但很明显,ML 预测算法将成为未来抑郁症治疗的一部分,临床医生应该为它们的到来做好准备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验