Suppr超能文献

通过生物信息学分析鉴定急性心肌梗死中与线粒体自噬相关的关键基因及其与免疫细胞浸润的相关性。

Identification of mitophagy-related key genes and their correlation with immune cell infiltration in acute myocardial infarction via bioinformatics analysis.

作者信息

Sheng Zulong, Zhang Rui, Ji Zhenjun, Liu Zhuyuan, Zhou Yaqing

机构信息

Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.

出版信息

Front Cardiovasc Med. 2025 Jan 13;11:1501608. doi: 10.3389/fcvm.2024.1501608. eCollection 2024.

Abstract

BACKGROUND

Acute myocardial infarction (AMI), a subset of acute coronary syndrome, remains the major cause of mortality worldwide. Mitochondrial dysfunction is critically involved in AMI progression, and mitophagy plays a vital role in eliminating damaged mitochondria. This study aimed to explore mitophagy-related biomarkers and their potential molecular basis in AMI.

METHODS

AMI datasets (GSE24519 and GSE34198) from the Gene Expression Omnibus database were combined and the batch effects were removed. Differentially expressed genes (DEGs) in AMI were selected, intersected with mitophagy-related genes for mitophagy-related DEGs (MRDEGs), and then subjected to enrichment analyses. Next, the MRDEGs were screened using machine learning methods (logistic regression analysis, RandomForest, least absolute shrinkage and selection operator) to construct a diagnostic risk model and select the key genes in AMI. The diagnostic efficacy of the model was evaluated using a nomogram. Moreover, the infiltration patterns of different immune cells in two risk groups were compared. We also explored the interactions between the key genes themselves or with miRNAs/transcription factors (TFs) and drug compounds and visualized the protein structure of the key genes. Finally, we explored and validated the expression of key genes in plasma samples of patients with an AMI and healthy individuals.

RESULTS

We screened 28 MRDEGs in AMI. Based on machine learning methods, 12 key genes were screened for the diagnostic risk model, including , and . The nomogram further revealed the accuracy of the model for AMI diagnosis. Moreover, we found a lower abundance of immune cells such as gamma delta T and natural killer cells in the high-risk group, and the expression of key genes showed a significant correlation with immune infiltration levels in both groups. Finally, 64 miRNA-mRNA pairs, 75 TF-mRNA pairs, 119 RNA-binding protein-mRNA pairs, and 32 drug-mRNA pairs were obtained in the interaction networks.

CONCLUSIONS

In total, 12 key MRDEGs were identified and a risk model was constructed for AMI diagnosis. The findings of this study might provide novel biomarkers for improving the detection of AMI.

摘要

背景

急性心肌梗死(AMI)是急性冠状动脉综合征的一个子集,仍然是全球范围内主要的死亡原因。线粒体功能障碍在AMI进展中起关键作用,而线粒体自噬在清除受损线粒体方面发挥着至关重要的作用。本研究旨在探索AMI中线粒体自噬相关生物标志物及其潜在的分子基础。

方法

合并来自基因表达综合数据库的AMI数据集(GSE24519和GSE34198)并消除批次效应。选择AMI中的差异表达基因(DEG),与线粒体自噬相关基因进行交叉以获得线粒体自噬相关DEG(MRDEG),然后进行富集分析。接下来,使用机器学习方法(逻辑回归分析、随机森林、最小绝对收缩和选择算子)筛选MRDEG以构建诊断风险模型并选择AMI中的关键基因。使用列线图评估模型的诊断效能。此外,比较了两个风险组中不同免疫细胞的浸润模式。我们还探索了关键基因之间或与miRNA/转录因子(TF)和药物化合物之间的相互作用,并可视化了关键基因的蛋白质结构。最后,我们探索并验证了AMI患者和健康个体血浆样本中关键基因的表达。

结果

我们在AMI中筛选出28个MRDEG。基于机器学习方法,为诊断风险模型筛选出12个关键基因,包括 、 和 。列线图进一步揭示了该模型用于AMI诊断的准确性。此外,我们发现高危组中γδT细胞和自然杀伤细胞等免疫细胞的丰度较低,并且关键基因的表达在两组中均与免疫浸润水平呈显著相关。最后,在相互作用网络中获得了64对miRNA-mRNA、75对TF-mRNA、119对RNA结合蛋白-mRNA和32对药物-mRNA。

结论

总共鉴定出12个关键的MRDEG并构建了用于AMI诊断的风险模型。本研究结果可能为改善AMI的检测提供新的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e1d/11770045/4222a287fba1/fcvm-11-1501608-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验