Suppr超能文献

MetaboLINK是一种用于揭示纵向数据集中细胞特异性代谢途径的新型算法。

MetaboLINK is a novel algorithm for unveiling cell-specific metabolic pathways in longitudinal datasets.

作者信息

Lichtarge Jared, Cappuccio Gerarda, Pati Soumya, Dei-Ampeh Alfred Kwabena, Sing Senghong, Ma LiHua, Liu Zhandong, Maletic-Savatic Mirjana

机构信息

Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.

Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, United States.

出版信息

Front Neurosci. 2025 Jan 13;18:1520982. doi: 10.3389/fnins.2024.1520982. eCollection 2024.

Abstract

INTRODUCTION

In the rapidly advancing field of 'omics research, there is an increasing demand for sophisticated bioinformatic tools to enable efficient and consistent data analysis. As biological datasets, particularly metabolomics, become larger and more complex, innovative strategies are essential for deciphering the intricate molecular and cellular networks.

METHODS

We introduce a pioneering analytical approach that combines Principal Component Analysis (PCA) with Graphical Lasso (GLASSO). This method is designed to reduce the dimensionality of large datasets while preserving significant variance. For the first time, we applied the PCA-GLASSO algorithm (i.e., MetaboLINK) to metabolomics data derived from Nuclear Magnetic Resonance (NMR) spectroscopy performed on neural cells at various developmental stages, from human embryonic stem cells to neurons.

RESULTS

The MetaboLINK analysis of longitudinal metabolomics data has revealed distinct pathways related to amino acids, lipids, and energy metabolism, uniquely associated with specific cell progenies. These findings suggest that different metabolic pathways play a critical role at different stages of cellular development, each contributing to diverse cellular functions.

DISCUSSION

Our study demonstrates the efficacy of the MetaboLINK approach in analyzing NMR-based longitudinal metabolomic datasets, highlighting key metabolic shifts during cellular transitions. We share the methodology and the code to advance general 'omics research, providing a powerful tool for dissecting large datasets in neurobiology and other fields.

摘要

引言

在快速发展的“组学”研究领域,对先进的生物信息学工具的需求日益增加,以实现高效且一致的数据分析。随着生物数据集,特别是代谢组学数据集变得越来越大且复杂,创新策略对于解读复杂的分子和细胞网络至关重要。

方法

我们引入了一种开创性的分析方法,将主成分分析(PCA)与图形套索(GLASSO)相结合。该方法旨在降低大型数据集的维度,同时保留显著的方差。我们首次将PCA - GLASSO算法(即MetaboLINK)应用于从人类胚胎干细胞到神经元等不同发育阶段的神经细胞的核磁共振(NMR)光谱衍生的代谢组学数据。

结果

对纵向代谢组学数据的MetaboLINK分析揭示了与氨基酸、脂质和能量代谢相关的不同途径,这些途径与特定的细胞后代独特相关。这些发现表明,不同的代谢途径在细胞发育的不同阶段发挥着关键作用,各自对多种细胞功能做出贡献。

讨论

我们的研究证明了MetaboLINK方法在分析基于NMR的纵向代谢组学数据集方面的有效性,突出了细胞转变过程中的关键代谢变化。我们分享了方法和代码,以推动一般的“组学”研究,为剖析神经生物学和其他领域的大型数据集提供了一个强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a9c/11769959/8d00ddfa95cc/fnins-18-1520982-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验