Suppr超能文献

比较 COVID-19 住院患者死亡率风险预测模型

Comparison of in-hospital mortality risk prediction models from COVID-19.

机构信息

VA Western New York Healthcare System, Buffalo, New York, United States of America.

Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Jacobs School of Medicine, University at Buffalo, Buffalo, New York, United States of America.

出版信息

PLoS One. 2020 Dec 28;15(12):e0244629. doi: 10.1371/journal.pone.0244629. eCollection 2020.

Abstract

OBJECTIVE

Our objective is to compare the predictive accuracy of four recently established outcome models of patients hospitalized with coronavirus disease 2019 (COVID-19) published between January 1st and May 1st 2020.

METHODS

We used data obtained from the Veterans Affairs Corporate Data Warehouse (CDW) between January 1st, 2020, and May 1st 2020 as an external validation cohort. The outcome measure was hospital mortality. Areas under the ROC (AUC) curves were used to evaluate discrimination of the four predictive models. The Hosmer-Lemeshow (HL) goodness-of-fit test and calibration curves assessed applicability of the models to individual cases.

RESULTS

During the study period, 1634 unique patients were identified. The mean age of the study cohort was 68.8±13.4 years. Hypertension, hyperlipidemia, and heart disease were the most common comorbidities. The crude hospital mortality was 29% (95% confidence interval [CI] 0.27-0.31). Evaluation of the predictive models showed an AUC range from 0.63 (95% CI 0.60-0.66) to 0.72 (95% CI 0.69-0.74) indicating fair to poor discrimination across all models. There were no significant differences among the AUC values of the four prognostic systems. All models calibrated poorly by either overestimated or underestimated hospital mortality.

CONCLUSIONS

All the four prognostic models examined in this study portend high-risk bias. The performance of these scores needs to be interpreted with caution in hospitalized patients with COVID-19.

摘要

目的

比较 2020 年 1 月 1 日至 5 月 1 日期间发表的四种最近建立的与因感染 2019 冠状病毒病(COVID-19)住院的患者结局相关模型的预测准确性。

方法

我们使用 2020 年 1 月 1 日至 5 月 1 日期间从退伍军人事务部企业数据仓库(CDW)获得的数据作为外部验证队列。结局指标为住院死亡率。我们使用 ROC 曲线下面积(AUC)来评估四个预测模型的区分度。Hosmer-Lemeshow(HL)拟合优度检验和校准曲线评估了模型对个体病例的适用性。

结果

在研究期间,共确定了 1634 名独特患者。研究队列的平均年龄为 68.8±13.4 岁。高血压、高血脂和心脏病是最常见的合并症。粗死亡率为 29%(95%置信区间 [CI] 0.27-0.31)。对预测模型的评估显示 AUC 范围为 0.63(95% CI 0.60-0.66)至 0.72(95% CI 0.69-0.74),表明所有模型的区分度均为中等至差。四个预后系统的 AUC 值之间没有显著差异。所有模型的校准都很差,要么高估了,要么低估了住院死亡率。

结论

本研究中检查的所有四个预后模型都预示着存在高风险偏倚。在 COVID-19 住院患者中,需要谨慎解释这些评分的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验