Yukawa Hiroshi, Kono Hidetoshi, Ishiwata Hitoshi, Igarashi Ryuji, Takakusagi Yoichi, Arai Shigeki, Hirano Yu, Suhara Tetsuya, Baba Yoshinobu
Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
Chem Soc Rev. 2025 Mar 31;54(7):3293-3322. doi: 10.1039/d4cs00650j.
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment. We overview the current status of the quantum life sciences from technologies and topics in quantum biology. Technologies such as biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers, and computer simulations are being developed to address these challenges. These interdisciplinary fields have the potential to revolutionize our understanding of living organisms and lead to advancements in genetics, molecular biology, medicine, and bioengineering.
量子生命科学这一新兴领域将量子物理学和生物学原理结合起来,在分子水平上研究基本的生命过程。描述小粒子性质的量子力学有助于解释诸如隧穿、叠加和纠缠等量子现象如何在生物系统中发挥作用。然而,在生命系统中捕捉这些效应是一项艰巨的挑战,因为这涉及到处理由周围环境引起的耗散和退相干。我们从量子生物学的技术和主题方面概述了量子生命科学的现状。正在开发诸如生物纳米量子传感器、基于量子技术的超极化磁共振成像/核磁共振、高速二维电子光谱仪和计算机模拟等技术来应对这些挑战。这些跨学科领域有可能彻底改变我们对生物体的理解,并推动遗传学、分子生物学、医学和生物工程学的进步。