Suppr超能文献

合作型机器人在不同战略框架下对合作呈现出细微的影响。

Cooperative bots exhibit nuanced effects on cooperation across strategic frameworks.

作者信息

Si Zehua, He Zhixue, Shen Chen, Tanimoto Jun

机构信息

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan.

School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, People's Republic of China.

出版信息

J R Soc Interface. 2025 Jan;22(222):20240427. doi: 10.1098/rsif.2024.0427. Epub 2025 Jan 29.

Abstract

The positive impact of cooperative bots on cooperation within evolutionary game theory is well-documented. However, prior studies predominantly use discrete strategic frameworks with deterministic actions. This article explores continuous and mixed strategic approaches. Continuous strategies use intermediate probabilities for varying degrees of cooperation and focus on expected payoffs, while mixed strategies calculate immediate payoffs from actions taken within these probabilities. Using the prisoner's dilemma game, this study examines the effects of cooperative bots on human cooperation in both well-mixed and structured populations across these strategic approaches. Our findings reveal that cooperative bots significantly enhance cooperation in both population types under weak imitation scenarios, where players are less concerned with material gains. Conversely, under strong imitation scenarios, cooperative bots do not alter the defective equilibrium in well-mixed populations but have varied impacts in structured populations. Specifically, they disrupt cooperation under discrete and continuous strategies but facilitate it under mixed strategies. These results highlight the nuanced effects of cooperative bots within different strategic frameworks and underscore the need for careful deployment, as their effectiveness is highly sensitive to how humans update their actions and their chosen strategic approach.

摘要

合作机器人在进化博弈论中对合作的积极影响已有充分记录。然而,先前的研究主要使用具有确定性行动的离散战略框架。本文探讨连续和混合战略方法。连续策略使用不同程度合作的中间概率,并关注预期收益,而混合策略则根据在这些概率内采取的行动计算即时收益。本研究使用囚徒困境博弈,考察了在这些战略方法下,合作机器人对混合良好和结构化群体中人类合作的影响。我们的研究结果表明,在弱模仿情景下,即玩家不太关注物质收益时,合作机器人在两种群体类型中都显著增强了合作。相反,在强模仿情景下,合作机器人不会改变混合良好群体中的缺陷均衡,但在结构化群体中有不同影响。具体而言,它们在离散和连续策略下会破坏合作,但在混合策略下会促进合作。这些结果凸显了合作机器人在不同战略框架中的细微影响,并强调了谨慎部署的必要性,因为它们的有效性对人类如何更新行动以及所选择的战略方法高度敏感。

相似文献

3
Evolving general cooperation with a Bayesian theory of mind.与贝叶斯心理理论不断发展的一般合作。
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2400993122. doi: 10.1073/pnas.2400993122. Epub 2025 Jun 16.
5
Stigma Management Strategies of Autistic Social Media Users.自闭症社交媒体用户的污名管理策略
Autism Adulthood. 2025 May 28;7(3):273-282. doi: 10.1089/aut.2023.0095. eCollection 2025 Jun.
7
Interventions to reduce harm from continued tobacco use.减少持续吸烟危害的干预措施。
Cochrane Database Syst Rev. 2016 Oct 13;10(10):CD005231. doi: 10.1002/14651858.CD005231.pub3.

本文引用的文献

4
Prosocial punishment bots breed social punishment in human players.亲社会惩罚机器人在人类玩家中培养社会惩罚行为。
J R Soc Interface. 2024 Mar;21(212):20240019. doi: 10.1098/rsif.2024.0019. Epub 2024 Mar 13.
7
The Moral Psychology of Artificial Intelligence.人工智能的道德心理学。
Annu Rev Psychol. 2024 Jan 18;75:653-675. doi: 10.1146/annurev-psych-030123-113559. Epub 2023 Sep 18.
8
Scaffolding cooperation in human groups with deep reinforcement learning.用深度强化学习来支撑人类群体的合作。
Nat Hum Behav. 2023 Oct;7(10):1787-1796. doi: 10.1038/s41562-023-01686-7. Epub 2023 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验