Zhou Yuchen, Liu Emmy, Neubig Graham, Tarr Michael J, Wehbe Leila
Carnegie Mellon University.
ArXiv. 2025 Jan 13:arXiv:2311.09308v3.
Do machines and humans process language in similar ways? Recent research has hinted at the affirmative, showing that human neural activity can be effectively predicted using the internal representations of language models (LMs). Although such results are thought to reflect shared computational principles between LMs and human brains, there are also clear differences in how LMs and humans represent and use language. In this work, we systematically explore the divergences between human and machine language processing by examining the differences between LM representations and human brain responses to language as measured by Magnetoencephalography (MEG) across two datasets in which subjects read and listened to narrative stories. Using an LLM-based data-driven approach, we identify two domains that LMs do not capture well: and . We validate these findings with human behavioral experiments and hypothesize that the gap is due to insufficient representations of social/emotional and physical knowledge in LMs. Our results show that fine-tuning LMs on these domains can improve their alignment with human brain responses.
机器和人类处理语言的方式相似吗?最近的研究暗示答案是肯定的,表明使用语言模型(LMs)的内部表征可以有效地预测人类神经活动。尽管这些结果被认为反映了语言模型和人类大脑之间共享的计算原则,但语言模型和人类在表征和使用语言的方式上也存在明显差异。在这项工作中,我们通过检查语言模型表征与人类大脑对语言的反应(通过脑磁图(MEG)测量)之间的差异,系统地探索人类和机器语言处理之间的差异,该差异是在两个数据集中测量的,在这两个数据集中,受试者阅读和聆听叙事故事。使用基于大型语言模型的数据驱动方法,我们确定了语言模型不能很好捕捉的两个领域: 和 。我们通过人类行为实验验证了这些发现,并假设这种差距是由于语言模型中社会/情感和物理知识的表征不足所致。我们的结果表明,在这些领域对语言模型进行微调可以改善它们与人类大脑反应的一致性。