Zhang Liping, Zhou Iris Yuwen, Montesi Sydney B, Feng Li, Liu Fang
ArXiv. 2025 Jan 16:arXiv:2501.09305v1.
To propose a domain-conditioned and temporal-guided diffusion modeling method, termed dynamic Diffusion Modeling (dDiMo), for accelerated dynamic MRI reconstruction, enabling diffusion process to characterize spatiotemporal information for time-resolved multi-coil Cartesian and non-Cartesian data.
The dDiMo framework integrates temporal information from time-resolved dimensions, allowing for the concurrent capture of intra-frame spatial features and inter-frame temporal dynamics in diffusion modeling. It employs additional spatiotemporal ($x$-$t$) and self-consistent frequency-temporal ($k$-$t$) priors to guide the diffusion process. This approach ensures precise temporal alignment and enhances the recovery of fine image details. To facilitate a smooth diffusion process, the nonlinear conjugate gradient algorithm is utilized during the reverse diffusion steps. The proposed model was tested on two types of MRI data: Cartesian-acquired multi-coil cardiac MRI and Golden-Angle-Radial-acquired multi-coil free-breathing lung MRI, across various undersampling rates.
dDiMo achieved high-quality reconstructions at various acceleration factors, demonstrating improved temporal alignment and structural recovery compared to other competitive reconstruction methods, both qualitatively and quantitatively. This proposed diffusion framework exhibited robust performance in handling both Cartesian and non-Cartesian acquisitions, effectively reconstructing dynamic datasets in cardiac and lung MRI under different imaging conditions.
This study introduces a novel diffusion modeling method for dynamic MRI reconstruction.
提出一种域条件和时间引导的扩散建模方法,称为动态扩散建模(dDiMo),用于加速动态磁共振成像(MRI)重建,使扩散过程能够表征时空信息,以处理时间分辨的多线圈笛卡尔和非笛卡尔数据。
dDiMo框架整合了来自时间分辨维度的时间信息,允许在扩散建模中同时捕获帧内空间特征和帧间时间动态。它采用额外的时空($x$-$t$)和自洽频率-时间($k$-$t$)先验来引导扩散过程。这种方法确保了精确的时间对齐,并增强了精细图像细节的恢复。为了促进平滑的扩散过程,在反向扩散步骤中使用了非线性共轭梯度算法。所提出的模型在两种类型的MRI数据上进行了测试:笛卡尔采集的多线圈心脏MRI和黄金角径向采集的多线圈自由呼吸肺部MRI,涵盖了各种欠采样率。
dDiMo在各种加速因子下都实现了高质量的重建,与其他竞争性重建方法相比,在定性和定量方面都展示了改进的时间对齐和结构恢复。所提出的扩散框架在处理笛卡尔和非笛卡尔采集方面表现出强大的性能,能够在不同成像条件下有效地重建心脏和肺部MRI的动态数据集。
本研究介绍了一种用于动态MRI重建的新型扩散建模方法。