Suppr超能文献

q模型:一种基于即插即用模型的重建方法,用于利用学习到的先验知识实现高度加速的多次激发扩散磁共振成像。

qModeL: A plug-and-play model-based reconstruction for highly accelerated multi-shot diffusion MRI using learned priors.

作者信息

Mani Merry, Magnotta Vincent A, Jacob Mathews

机构信息

Department of Radiology, University of Iowa, Iowa City, IA, USA.

Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA.

出版信息

Magn Reson Med. 2021 Aug;86(2):835-851. doi: 10.1002/mrm.28756. Epub 2021 Mar 24.

Abstract

PURPOSE

To introduce a joint reconstruction method for highly undersampled multi-shot diffusion weighted (msDW) scans.

METHODS

Multi-shot EPI methods enable higher spatial resolution for diffusion MRI, but at the expense of long scan-time. Highly accelerated msDW scans are needed to enable their utilization in advanced microstructure studies, which require high q-space coverage. Previously, joint k-q undersampling methods coupled with compressed sensing were shown to enable very high acceleration factors. However, the reconstruction of this data using sparsity priors is challenging and is not suited for multi-shell data. We propose a new reconstruction that recovers images from the combined k-q data jointly. The proposed qModeL reconstruction brings together the advantages of model-based iterative reconstruction and machine learning, extending the idea of plug-and-play algorithms. Specifically, qModeL works by prelearning the signal manifold corresponding to the diffusion measurement space using deep learning. The prelearned manifold prior is incorporated into a model-based reconstruction to provide a voxel-wise regularization along the q-dimension during the joint recovery. Notably, the learning does not require in vivo training data and is derived exclusively from biophysical modeling. Additionally, a plug-and-play total variation denoising provides regularization along the spatial dimension. The proposed framework is tested on k-q undersampled single-shell and multi-shell msDW acquisition at various acceleration factors.

RESULTS

The qModeL joint reconstruction is shown to recover DWIs from 8-fold accelerated msDW acquisitions with error less than 5% for both single-shell and multi-shell data. Advanced microstructural analysis performed using the undersampled reconstruction also report reasonable accuracy.

CONCLUSION

qModeL enables the joint recovery of highly accelerated multi-shot dMRI utilizing learning-based priors. The bio-physically driven approach enables the use of accelerated multi-shot imaging for multi-shell sampling and advanced microstructure studies.

摘要

目的

介绍一种用于高度欠采样多激发扩散加权(msDW)扫描的关节重建方法。

方法

多激发回波平面成像(EPI)方法可实现更高的扩散磁共振成像空间分辨率,但以较长的扫描时间为代价。为了在需要高q空间覆盖率的高级微观结构研究中使用,需要高度加速的msDW扫描。此前,联合k-q欠采样方法与压缩感知相结合可实现非常高的加速因子。然而,使用稀疏先验对该数据进行重建具有挑战性,且不适用于多壳数据。我们提出一种新的重建方法,可从联合的k-q数据中共同恢复图像。所提出的qModeL重建结合了基于模型的迭代重建和机器学习的优点,扩展了即插即用算法的理念。具体而言,qModeL通过使用深度学习预学习与扩散测量空间对应的信号流形来工作。将预学习的流形先验纳入基于模型的重建中,以便在联合恢复过程中沿q维度提供逐体素正则化。值得注意的是,该学习不需要体内训练数据,且完全源自生物物理建模。此外,即插即用的全变差去噪可沿空间维度提供正则化。所提出的框架在各种加速因子下对k-q欠采样单壳和多壳msDW采集进行了测试。

结果

qModeL联合重建显示,对于单壳和多壳数据,均可从8倍加速的msDW采集中恢复扩散加权图像(DWI),误差小于5%。使用欠采样重建进行的高级微观结构分析也报告了合理的准确性。

结论

qModeL能够利用基于学习的先验对高度加速的多激发扩散磁共振成像进行联合恢复。这种生物物理驱动的方法能够将加速多激发成像用于多壳采样和高级微观结构研究。

相似文献

引用本文的文献

本文引用的文献

2
J-MoDL: Joint Model-Based Deep Learning for Optimized Sampling and Reconstruction.J-MoDL:基于联合模型的深度学习用于优化采样与重建
IEEE J Sel Top Signal Process. 2020 Oct;14(6):1151-1162. doi: 10.1109/jstsp.2020.3004094. Epub 2020 Jun 22.
4
A Tour of Unsupervised Deep Learning for Medical Image Analysis.医学图像分析的无监督深度学习之旅。
Curr Med Imaging. 2021;17(9):1059-1077. doi: 10.2174/1573405617666210127154257.
6
Challenges for biophysical modeling of microstructure.微观结构的生物物理建模面临的挑战。
J Neurosci Methods. 2020 Oct 1;344:108861. doi: 10.1016/j.jneumeth.2020.108861. Epub 2020 Jul 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验