Suppr超能文献

流形上的动力学:从神经元群体记录中识别计算动力学活动。

Dynamics on the manifold: Identifying computational dynamical activity from neural population recordings.

机构信息

Gatsby Computational Neuroscience Unit, University College London, London, UK; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.

Gatsby Computational Neuroscience Unit, University College London, London, UK.

出版信息

Curr Opin Neurobiol. 2021 Oct;70:163-170. doi: 10.1016/j.conb.2021.10.014. Epub 2021 Nov 24.

Abstract

The question of how the collective activity of neural populations gives rise to complex behaviour is fundamental to neuroscience. At the core of this question lie considerations about how neural circuits can perform computations that enable sensory perception, decision making, and motor control. It is thought that such computations are implemented through the dynamical evolution of distributed activity in recurrent circuits. Thus, identifying dynamical structure in neural population activity is a key challenge towards a better understanding of neural computation. At the same time, interpreting this structure in light of the computation of interest is essential for linking the time-varying activity patterns of the neural population to ongoing computational processes. Here, we review methods that aim to quantify structure in neural population recordings through a dynamical system defined in a low-dimensional latent variable space. We discuss advantages and limitations of different modelling approaches and address future challenges for the field.

摘要

群体神经活动如何产生复杂行为这一问题是神经科学的根本问题。该问题的核心是考虑神经回路如何进行计算,从而实现感觉感知、决策和运动控制。人们认为,这种计算是通过在递归回路中分布式活动的动态演变来实现的。因此,识别神经群体活动中的动态结构是更好地理解神经计算的关键挑战。同时,根据感兴趣的计算来解释这种结构对于将神经群体的时变活动模式与正在进行的计算过程联系起来至关重要。在这里,我们回顾了旨在通过低维潜在变量空间中定义的动力系统来量化神经群体记录中结构的方法。我们讨论了不同建模方法的优缺点,并探讨了该领域未来的挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验