Suppr超能文献

风险与发生率,以及它们之间的数学联系。

Risks and rates, and the mathematical link between them.

作者信息

Hanley James A

机构信息

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, H3A 1G1, Canada.

出版信息

Eur J Epidemiol. 2025 Jan;40(1):1-15. doi: 10.1007/s10654-024-01191-9. Epub 2025 Jan 29.

Abstract

The risk over a given time span can be calculated as one minus the exponentiated value of the negative of the integral of the incidence density function (or hazard rate function) over that time span. This relationship is widely used but, in the few instances where textbooks have presented it, the derivations of it tend to be purely mathematical. I first review the historical contexts, definitions, distinctions and links. I then offer a more intuitive heuristic approach that draws on the conceptualization of a person-year in Edmonds' 1832 definition of the force of mortality, and on the number of replacements in a dynamic population. Similarly I show how the Nelson-Aalen risk estimator can be seen in the context of this historical conceptualization of a person-year, scaled to the experience of a dynamic population of (constant) size 1.

摘要

给定时间段内的风险可以通过以下方式计算

用1减去发病率密度函数(或风险率函数)在该时间段内积分的负值的指数化值。这种关系被广泛使用,但在教科书提及它的少数情况下,其推导往往纯粹是数学性的。我首先回顾历史背景、定义、区别和联系。然后,我提供一种更直观的启发式方法,该方法借鉴了埃德蒙兹1832年死亡率定义中“人年”的概念化,以及动态人群中的更替数量。同样,我展示了如何在这种“人年”的历史概念化背景下看待纳尔逊 - 亚alen风险估计器,并将其按比例调整为规模为1(恒定)的动态人群的经验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验