Hanley James A
Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, H3A 1G1, Canada.
Eur J Epidemiol. 2025 Jan;40(1):1-15. doi: 10.1007/s10654-024-01191-9. Epub 2025 Jan 29.
The risk over a given time span can be calculated as one minus the exponentiated value of the negative of the integral of the incidence density function (or hazard rate function) over that time span. This relationship is widely used but, in the few instances where textbooks have presented it, the derivations of it tend to be purely mathematical. I first review the historical contexts, definitions, distinctions and links. I then offer a more intuitive heuristic approach that draws on the conceptualization of a person-year in Edmonds' 1832 definition of the force of mortality, and on the number of replacements in a dynamic population. Similarly I show how the Nelson-Aalen risk estimator can be seen in the context of this historical conceptualization of a person-year, scaled to the experience of a dynamic population of (constant) size 1.
用1减去发病率密度函数(或风险率函数)在该时间段内积分的负值的指数化值。这种关系被广泛使用,但在教科书提及它的少数情况下,其推导往往纯粹是数学性的。我首先回顾历史背景、定义、区别和联系。然后,我提供一种更直观的启发式方法,该方法借鉴了埃德蒙兹1832年死亡率定义中“人年”的概念化,以及动态人群中的更替数量。同样,我展示了如何在这种“人年”的历史概念化背景下看待纳尔逊 - 亚alen风险估计器,并将其按比例调整为规模为1(恒定)的动态人群的经验。