Suppr超能文献

维生素K驱动的膜界面γ羧化作用的分子基础。

Molecular basis of vitamin-K-driven γ-carboxylation at the membrane interface.

作者信息

Cao Qing, Ammerman Aaron, Saimi Mierxiati, Lin Zongtao, Shen Guomin, Chen Huaping, Sun Jie, Chai Mengqi, Liu Shixuan, Hsu Fong-Fu, Krezel Andrzej M, Gross Michael L, Xu Jinbin, Garcia Benjamin A, Liu Bin, Li Weikai

机构信息

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.

Department of Cell Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China.

出版信息

Nature. 2025 Mar;639(8055):816-824. doi: 10.1038/s41586-025-08648-1. Epub 2025 Jan 29.

Abstract

The γ-carboxylation of glutamate residues enables Ca-mediated membrane assembly of protein complexes that support broad physiological functions, including haemostasis, calcium homeostasis, immune response and endocrine regulation. Modulating γ-carboxylation levels provides prevalent treatments for haemorrhagic and thromboembolic diseases. This unique post-translational modification requires vitamin K hydroquinone (KH) to drive highly demanding reactions catalysed by the membrane-integrated γ-carboxylase (VKGC). Here, to decipher the underlying mechanisms, we determined cryo-electron microscopy structures of human VKGC in unbound form, with KH and four haemostatic and non-haemostatic proteins possessing propeptides and glutamate-rich domains in different carboxylation states. VKGC recognizes substrate proteins through knob-and-hole interactions with propeptides, thereby bringing tethered glutamate-containing segments for processive carboxylation within a large chamber that provides steric control. Propeptide binding also triggers a global conformational change to signal VKGC activation. Through sequential deprotonation and KH epoxidation, VKGC generates a free hydroxide ion as an exceptionally strong base that is required to deprotonate the γ-carbon of glutamate for CO addition. The diffusion of this superbase-protected and guided by a sealed hydrophobic tunnel-elegantly resolves the challenge of coupling KH epoxidation to γ-carboxylation across the membrane interface. These structural insights and extensive functional experiments advance membrane enzymology and propel the development of treatments for γ-carboxylation disorders.

摘要

谷氨酸残基的γ羧化作用能够使蛋白质复合物进行钙介导的膜组装,从而支持广泛的生理功能,包括止血、钙稳态、免疫反应和内分泌调节。调节γ羧化水平为出血性和血栓栓塞性疾病提供了常见的治疗方法。这种独特的翻译后修饰需要维生素K对苯二酚(KH)来驱动由膜整合γ羧化酶(VKGC)催化的高要求反应。在这里,为了解释其潜在机制,我们确定了未结合形式的人VKGC的冷冻电子显微镜结构,该结构与KH以及四种具有不同羧化状态的前肽和富含谷氨酸结构域的止血和非止血蛋白结合。VKGC通过与前肽的旋钮-孔相互作用识别底物蛋白,从而将连接的含谷氨酸片段带到一个提供空间控制的大腔室内进行连续羧化。前肽结合还会触发全局构象变化以信号VKGC激活。通过连续去质子化和KH环氧化,VKGC产生一个游离氢氧根离子作为异常强的碱,该碱是使谷氨酸的γ碳去质子化以添加CO所必需的。这种由密封疏水通道保护和引导的超强碱的扩散巧妙地解决了将KH环氧化与跨膜界面的γ羧化偶联的挑战。这些结构见解和广泛的功能实验推动了膜酶学的发展,并促进了γ羧化障碍治疗方法的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验